М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Danil1214d
Danil1214d
06.05.2020 03:39 •  Алгебра

Два автомобиля одновременно отправляются в 990-километровый пробег. первый едет со скоростью на 9 км/ч большей, чем второй, и прибывает к финишу на 1 ч раньше второго. найдите скорость первого автомобиля.

👇
Ответ:
( 990 / X ) - ( 990 / ( X - 9 ))  = - 1 
990 * ( X - 9 ) - 990X = - X^2 + 9X 
X^2 - 9X - 8910 = 0
D = 81 + 3560 = 35721 ; √ D = 189 
X1 = ( 9 + 189 ) : 2 = 99 
X2 < 0 
Cкорость первого 99 ( км/час )
4,7(68 оценок)
Открыть все ответы
Ответ:
marinaaslanova1
marinaaslanova1
06.05.2020

1) выражаешь cosx

cosx=-1/2

смотришь по окружности

x=2п/3 +2пk, k принадлежит Z

x=-2п/3 +2пk, k принадлежит Z

Это и есть наш ответ: {2п/3 +2пk;-2п/3 +2пk}

2) sin2x - 3sinxcosx + 2cos2x = 0

формула sin2x=2sinxcosx

cos2x=cosx^2-sinx^2

подставляем в наше уравнение

2sinxcosx- 3sinxcosx + 2(cosx^2-sinx^2)=0

-sinxcos+2cosx^2-2sinx^2=0  делим всё уравнение на cosx^2

получаем

-tgx+2-2tgx^2=0

Пусть tgx=t

2t^2+2-2=0

Решаем квадратное уравнение, находим t,

 

Затем подставляем в уравнение tgx=t , и находим отсюда x, с нашей окружности.

 

 

4,6(77 оценок)
Ответ:
Danil200000006
Danil200000006
06.05.2020
Рассмотрим сначала числа со старшим разрядом единиц
(в обратном порядке):

9^2 = 81 \ ;       сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.

4^2 = 16 \ ;       искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.

3^2 = 9 \ ;       искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.

0^2 = 0 \ ;       искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.

Теперь переходим к старшему разряду десятков
(в обратном порядке):

99^2 < 10 \ 000 \ ;       сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.

40^2 = 1600 \ ;       сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.

30^2 = 900 \ ;       сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .

10^2 = 100 \ ;       сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .

Далее переходим к старшему разряду сотен
(в обратном порядке):

999^2 < 1 \ 000 \ 000 \ ;       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

400^2 = 160 \ 000 \ ;       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

300^2 = 90 \ 000 \ ;       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

100^2 = 10 \ 000 \ ;       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

Ну и ещё переходим к старшему разряду тысяч
(в обратном порядке):

9 \ 999^2 < 100 \ 000 \ 000 \ ;       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

4000^2 = 16 \ 000 000 \ ;       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

3000^2 = 9 \ 000 000 \ ;       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

1000^2 = 1 \ 000 000 \ ;       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

А теперь всё обобщим на самый общий случай.

Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.

Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:

(  99999 : : : R цифр : : : 99999  )   –   это число на единицу меньше, чем число     (  100000 : : : R нулей : : : 00000  )     , в котором (R+1) цифр.

квадрат числа [(  99999 : : : R цифр : : : 99999  )]    –   это число, меньшее, чем число     (  100000 : : : 2R нулей : : : 00000  )     , в котором (2R+1) цифр.

Значит, квадрат числа (  99999 : : : R цифр : : : 99999  ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  400000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  400000 : : : (R–1) нулей : : : 00000  )]  =
=  (  1600000 : : : (2R–2) нулей : : : 00000  )  содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  300000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  300000 : : : (R–1) нулей : : : 00000  )]  =
=  (  900000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

в числе (  100000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  100000 : : : (R–1) нулей : : : 00000  )]  =
=  (  100000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

И так будет для любого R

R = 1   : : :  сумма: 3R = 3 или (3R–1) = 2 .
R = 2   : : :  сумма: 3R = 6 или (3R–1) = 5 .
R = 3   : : :  сумма: 3R = 9 или (3R–1) = 8 .
R = 4   : : :  сумма: 3R = 12 или (3R–1) = 11 .
R = 5   : : :  сумма: 3R = 15 или (3R–1) = 14 .

  . . .

R = 32   : : :  сумма: 3R = 96 или (3R–1) = 95 .
R = 33   : : :  сумма: 3R = 99 или (3R–1) = 98 .
R = 34   : : :  сумма: 3R = 102 или (3R–1) = 101 .
R = 35   : : :  сумма: 3R = 105 или (3R–1) = 104 .

... и т.д и т.п. ...

Как легко видеть, в этой последовательности:

2, 3,  5, 6,  8, 9,  11, 12,  14, 15 .... 95, 96,  98, 99,  101, 102,  104, 105 ....

пропущены определённые числа. Пропущенные числа:

1, 4, 7, 10, 13, 16 .... 94, 97, 100, 103, 106 ....

подчиняются закону (3R+1).

В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .

Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число   100 = 3*33+1   никак не могло бы оказаться в расчётах Лены.

О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.

ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.

в частности, у неё не могло получиться число 100.
4,4(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ