X²+y²=4; y=2-x² x²+(2-x²)²-2-2=0; (2-x²)²-(2-x²)-2=0; 2-x²=t t²-t-2=0⇒t₁=2; t₂=-1 2-x²=2⇒x²=0⇒x₁=0;y₁=2-0=2 2-x²=-1⇒x²=3⇒x₂=√3; x₃=-√3; y₂=y₃=2-3=-1 есть три точки пересечения: (0;2),(√3;-1) и (-√3;-1)
1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
x²+(2-x²)²-2-2=0; (2-x²)²-(2-x²)-2=0; 2-x²=t
t²-t-2=0⇒t₁=2; t₂=-1
2-x²=2⇒x²=0⇒x₁=0;y₁=2-0=2
2-x²=-1⇒x²=3⇒x₂=√3; x₃=-√3; y₂=y₃=2-3=-1
есть три точки пересечения: (0;2),(√3;-1) и (-√3;-1)