Квадрат гипотенузы равен сумме квадратов катетов.
(a + b)² = a² + 2ab + b² - формула
Пусть х см - больший катет, тогда у см - меньший катет. Известно, что х на 3 см больше у. Гипотенуза равна 15 см. Составим систему уравнений по условию задачи.
{х² + у² = 15²
{х = (у + 3)
- - - - - - - - - - - - -
(у + 3)² + у² = 15²
у² + 6у + 9 + у² = 225
2у² + 6у - 216 = 0
Сократим обе части уравнения на 2
у² + 3у - 108 = 0
D = b² - 4ac = 3² - 4 · 1 · (-108) = 9 + 432 = 441
√D = √441 = 21
у₁ = (-3-21)/(2·1) = -24/2 = -12 (не подходит, так как < 0)
у₂ = (-3+21)/(2·1) = 18/2 = 9
х = у + 3 = 9 + 3 = 12
ответ: 12 см и 9 см.
Проверка:
12² + 9² = 15²
144 + 81 = 225
225 = 225 - верно.
В решении.
Объяснение:
1) Найти периметр прямоугольного треугольника, если один из его катетов на 23 см меньше второго катета и на 25 см меньше гипотенузы.
х - длина первого катета.
х + 23 - длина второго катета.
х + 25 - длина гипотенузы.
По теореме Пифагора:
(х + 25)² = х² + (х + 23)²
Раскрыть скобки:
х² + 50х + 625 = х² + х² + 46х + 529
Привести подобные члены:
х² + 50х + 625 - х² - х² - 46х - 529 = 0
-х² + 4х + 96 = 0/-1
х² - 4х - 96 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 16 + 384 = 400 √D= 20
х₁=(-b-√D)/2a
х₁=(4-20)/2
х₁= -16/2 = -8, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(4+20)/2
х₂=24/2
х₂=12 (см) - длина первого катета.
12+23=35 (см) - длина второго катета.
12+25=37 (см) - длина гипотенузы.
Проверка по теореме Пифагора:
12² + 35² = 144 + 1225 = 1369;
37² = 1369;
1369 = 1369, верно.
Р треугольника = 12 + 35 + 37 = 84 (см).
2) Утроенное натуральное число на 54 меньше своего квадрата. Найти натуральное число.
х - натуральное число.
По условию задачи уравнение:
х² - 3х = 54
х² - 3х - 54 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 9 + 216 = 225 √D=15
х₁=(-b-√D)/2a
х₁=(3-15)/2
х₁= -12/2 = -6, отбрасываем, как отрицательное.
х₂=(-b+√D)/2a
х₂=(3+15)/2
х₂=18/2
х₂=9 - натуральное число.
Проверка:
9² - 3*9 = 81 - 27 = 54, верно.
Объяснение:
ответ на картинке........