Катер км против течение и 6 км по течению, затратив на весь путь столько же времени, сколько ему потребовалась бы, если бы он шёл 22 км по озеру. какова собственная скорость катера, если скорость течения реки равна 2 км/ч?
Пусть собственная скорость катера х км\час. Тогда скорость по течению х+2 км\час, скорость против течения х-2 км\час. Против течения катер плывет 15\(х-2) час, по течению 6\(х+2) час. Составим уравнение: 15\(х-2)+6\(х+2)=22\х; х квадрат-18х-88=0; х=22. ответ: 22 км\час.
Пусть — общее число человек на экзамене по математике. 15% не решили ни одной задачи, запишем это как , 144 человека решили с ошибками, а число верно решивших все задачи относится к числу не решивших вовсе, как 5:3. Как же это записать? Временно обозначим число верно решивших задания как . Итак, число верно решивших относится к числу не решивших вовсе, как 5:3. Получается: , отсюда . Итак, у нас есть три группы экзаменуемых: не решили , решили с ошибками 144, решили правильно . Вместе эти три группы есть общее число человек на экзамене, то есть . Получаем: Решаем уравнение: ответ: 240
Y=(4x+12)/(x+2)^2 Х не равен -2 y ' = [(4x+12)'*(x+2)^2 - (4x+12)*((x+2)^2)'] / (x+2)^4= =[4(x+2)^2 -(4x+12)(2(x+2))] / (x+2)^4= =(4x^2+16x+16-8x^2-40x-48)/(x+2)^2= =(-4x^2-24x-32)/(x+2)^4 Приравняем производную к нулю: (-4x^2-24x-32)/(x+2)^4=0 -4x^2-24x-32=0 Разделим обе части уравнения на "-4": x^2+6x+8=0 D=6^2-4*1*8=4 x1=(-6-2)/2=-4 x2=(-6+2)/2=-2 Производная не существует в точке х=-2. Это точка разрыва функции(полюс). +-4--2+ max. Итак: на луче ( -беск.: -4] функция возрастает; на полуинтервале [-4;-2) - убывает, а на промежутке (-2;+беск.) - возрастает. Х=-4 - точка максимума, причем У max. = -1(подставили значение х=-4 в первоначальную формулу).