№1 (а)
ответ: -\frac{4}{3}" class="latex-formula" id="TexFormula2" src="https://tex.z-dn.net/?f=x%20%3E%20-%5Cfrac%7B4%7D%7B3%7D" title="x > -\frac{4}{3}">
№1 (б)
№2 (а)
-4} \atop {x\leq -2.5}} \right." class="latex-formula" id="TexFormula6" src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%3E-4%7D%20%5Catop%20%7Bx%5Cleq%20-2.5%7D%7D%20%5Cright." title="\left \{ {{x>-4} \atop {x\leq -2.5}} \right.">
№2(б)
\frac{36}{5}" class="latex-formula" id="TexFormula10" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
ответ: \frac{36}{5}" class="latex-formula" id="TexFormula12" src="https://tex.z-dn.net/?f=x%20%3E%20%5Cfrac%7B36%7D%7B5%7D" title="x > \frac{36}{5}">
1) Сложение отрицательных чисел. Возьмем пример -3+(-3)= Оба числа отрицательны, так что получаем, по сути, -3-3= Теперь достаточно сложить модули этих чисел и вписать перед ними минус, так как он, повторюсь, отрицательны
2) Сложение отрицательных и положительных чисел. Допустим, мы имеем пример -7+5=... Чтобы его решить, необходимо вычесть из числа с большим модулем число с меньшим модулем, не учитывая при этом знаки. 7-5=2. Потом мы подпишем знак минус перед двойкой, потому что у числа с большим модулем (семерки) значение было отрицательным.
Теперь важное примечание.
+- дают минус
-- дают плюс
Так что, если нам встретиться пример вроде 5-(-3), мы преобразуем его в 5+3 и получим 8
Чтобы решить эту задачку необходимо дважды составлять уравнение.
Сначала система, а затем обычное уравнение.
Подскажу - есть один хитрый для избавления от квадратов. Успехов.