8
Объяснение:
Пусть все наши 14 карточек находится по порядку и не "склеиваются". Тогда поставим между ними знак + и посчитаем сумму
5 + 5 + 5 + … + 5 = 5*14 = 70 < 295 - не получилось.
Наша сумма оказалась слишком маленькая поэтому нам неоюходимо соединять карточки 5 в числа. Ясно, что в 555 соединять не надо - слишком много. Тогда попробуем по порядку:
1 число 55: 55 + 5 + 5 + ... + 5 = 115 < 295 - не попали
2 чисел 55: 55 + 55 + 5 + 5 + ... + 5 = 160 - снова не попали
3 числа 55: 55 + 55 + 55 + 5 + ... = 205 < 295 - опять не то
4 числа 55: 55 + 55 + 55 + 55 + 5 + ... = 250 < 295 - близко, но не то
5 чисел 55: 55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5 = 295 - Получилось!
Тогда посчитаем количество плюсов в примере
55 + 55 + 55 + 55 + 55 + 5 + 5 + 5 + 5
Получим 8 штук - и это ответ!
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
тогда 2(a+b)=a+(a + b^2)
2a+2b=2a+b^2
b^2-2b=0
b=0 или b=2- эти ответы не подходят, нужны не целые числа.
2) среднее число а
2а=(a+b)+(a+b^2)
b^2+b=0
b=0 или b=-1- опять не подходит
3)среднее число а+b^2
2+(a+b^2)=a+(a+b)
2b^2)-b=0
b=0 или b=1/2- подходит только b=1/2
ответ: b=1/2