Пусть t ч - время автобуса при старом расписании, тогда его средняя скорость составляла 325/t км/ч. 40 мин = 2/3 ч По новому расписанию время автобуса составляет (t- 2/3) ч, а средняя скорость равна 325/(t- 2/3) км/ч. По условию задачи, скорость движения по новому расписанию на 10 км/ч больше скорости автобуса по старому расписанию. Составим уравнение: 325/(t- 2/3) - 325/t =10 325/((3t-2)/3) -325/t =10 975/(3t-2) - 325/t = 10 |*t(3t-2) 975t - 975t + 650 = 10t(3t-2) 30t²-20t-650=0 3t²-2t-65=0 D=(-2)²-4*3*(-65)=784=28² t₁=(2+28)/6=5 t₂=(2-28)/6=-4.1/3<0 (лишний корень) t=5 ч - время автобуса по старому расписанию 325/5= 65 км/ч - скорость автобуса согласно старому расписанию 65+10=75 км/ч - скорость автобуса согласно новому расписанию ответ: 75 км/ч
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).