Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.
ответ: 30 часов.
Объяснение:
Производительность двух труб равна 1/12 части резервуара за час
Пусть время наполнения первой трубы равно х часов.
Тогда время наполнения 2 трубы равно х +10 часов. соответственно их производительности равны 1/х и 1/х+10 часть/ час.
Совместная производительность равна
1/х + 1/(х +10) = 1/12;
12(х+10) + 12х = х(х+10);
12х +120 +12х =х²+10х;
х² - 24х+10х -120 =0;
х² -14х-120=0;
х1= 20; х2= -6 - не соответствует условию
х=20 часов заполняет 1 труба.
х+10=20+10=30 часов - время заполнения 2-й трубой.
Проверим:
1/20 + 1/30 = (3+2)/60 = 5/60 = 1/12. Всё верно!
g'(x)=e^(x+5) (5x-3) + e^(x+5) * 5
g''(x)= e^(x+5) (5x-3) + e^(x+5) *5 + 5*e^(x+5) =e^(x+5) *(5x-3+5+5)=
=e^(x+5) * (5x+7) = F(x)
2x^2+lg10^2+F(x)=2a
2x²+2 + (5x+7) e^(x+5) =2a
x²+1 + [ (5x+7) e^(x+5) ] / 2=a