В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 17, а разность их квадратов 799. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 17
х² - у² = 799
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 17 + у
(17 + у)² - у² = 799
289 + 34у + у² - у² = 799
34у = 799 - 289
34у = 510
у = 510/34
у = 15 - второе число.
х = 17 + у
х = 17 + 15
х = 32 - первое число.
Проверка:
32 - 15 = 17, верно.
32² - 15² = 1024 - 225 = 799, верно.
Объяснение:
lim(x→3) (x + (x²-9)/(x-3)) =
= lim(x→3) (x) + lim(x→3) (x²-9)/(x-3) =
= [3] + [0/0] =
= 3 + lim(x→3) (x²-9)/(x-3) =
= 3 + lim(x→3) (x-3)*(x+3)/(x-3) =
=3 + lim(x→3) (x+3)=
=3 + [6] =
=3 + 6 = 9
lim(x→3) (x + (x²-9)/(x-3)) =
= lim(x→3) (x) + lim(x→3) (x²-9)/(x-3) =
= [3] + [0/0] =
Воспользуемся правилом Лопиталя:
= 3 + lim(x→3) (x²-9)' / (x-3)' =
= 3 + lim(x→3) (2х+0)/(1+0)=
= 3 + lim(x→3) (2х)=
= 3 + [6]=
=3+6=9
lim(x→-2) ((4-х²)/(х-2) +х) =
=lim(x→-2) (4-х²)/(х-2) + lim(x→-2) (х)=
= [0/-4=0] + [-2]=
=0 + (-2) = -2
lim(x→-2) ((4-х²)/(х-2) +х) =
= lim(x→-2) (4-х²)/(х-2) + lim(x→-2) (х)=
= lim(x→-2) (2-х)*(2+х)/(х-2) + lim(x→-2) (х) =
= lim(x→-2) (-(2+х)) + lim(x→-2) (х) =
= [-(0)=0] + [-2]=
=0 + (-2) = -2