М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nyrkoff
Nyrkoff
04.11.2020 16:48 •  Алгебра

Тема: "формулы сокращенного умножения", , 7 класс. образец: (a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2 это надо решить: (8+z)^2= (y-3)^2= (x-7)^2= (4x+5)^2= (6y-2)^2= (3m+1)^2= (2+k)^2= (y-9)^2= (x-1)^2= (2x+n)^2= (3y-2)^2= (4m+3)^2=

👇
Ответ:
dauren130
dauren130
04.11.2020
Ня~
64+16z+z^2
y^2-6y+9
x^2-14x+49
16x^2+40x+25
36y^2-4y+4
9m^3+2m+1
4+2k^2+k^2
y^2-18y+81
x^2-2x+1
4x^2+4xn+n^2
9y^2-12y+4
16m^2+24m+9
4,7(68 оценок)
Открыть все ответы
Ответ:
siraevadiana
siraevadiana
04.11.2020
ответ: В - 4

Предположим, что на карточках есть хотя бы 4 различных числа a<b<c<d. Тогда суммы a+b+c, a+b+d, a+c+d попарно различны, что невозможно. Рассмотрим случай, когда на карточках есть ровно 3 различных числа a<b<c. При этом хотя бы одно число (например, a) встречается не менее 2 раз. Тогда суммы 2a+b<2a+c<a+b+c, что невозможно. Все 6 чисел между собой равны быть не могут, поэтому остается случай, когда есть только 2 различных числа a<b. 

Если есть хотя бы две карточки с числом a и 2 карточки с числом b, то суммы 2a+b, a+2b попарно различны и 2a+b<a+2b. Тогда 2a+b=16, a+2b=18, сложив эти равенства, имеем 3a+3b=34, что невозможно, поскольку 34 не делится на 3. Остаются случаи, когда либо есть число a и 5 чисел b, либо число b и 5 чисел a. В первом случае 10 сумм равны a+2b=16 и 10 сумм равны 3b=18, откуда b=6, a=4. Во втором случае 2a+b=16, 3a=18, откуда a=6, b=4, что противоречит условию a<b. Таким образом, наименьшее из чисел равно 4.
4,7(93 оценок)
Ответ:
Anna06111
Anna06111
04.11.2020
Системы можно решать двумя (по крайней мере, мне известно лишь два
сложением и подстановкой.

Ну, возьмем простенькое

у+х=6,
х^2-2у+4=0;

через верхнее уравнение можем подставить в нижнее значение х в нижнее,

то есть:

х=6-у,
(6-у)^2-2y+4=0;

дальше решаем нижнее полученное уравнение, выписывая его ниже

(6-у)^2-2y+4=0
36-12у+у^2-2у+4=0
y^2-14y+36=0

потом решаем через дискриминант
таким образом мы получаем два корня (если нет никаких ограничений по заданию)

дальше  значения у мы подставляем вот в это уравнение, чтобы выявить х
то есть
сюда х=6-у
подставляем сначала первое значение у, а потом и второе
считаем и находим два значения х и у
(не забываем про знаки в системах! после первого уравнения -- запятая, после второго -- точка с зпт)

а если сложением, то тут обычно нужно еще и подделать одно из уравнений. я пользуюсь практически всегда методом подстановки

но если разбирать сложение, то  тоже на простеньком примере

у-х=12
3у+х=22

складываем эти два уравнения
и получаем
4у=34
х самоуничтожились, так как -х+х=0
теперь мы можем найти у
у=34/4

а потом снова же подставляем это значение в любое уравнение системы и находим х.
4,4(68 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ