М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
суады
суады
12.10.2020 11:48 •  Алгебра

2a-ab+b-3b разложите на множители оля

👇
Ответ:
timursharipov2006
timursharipov2006
12.10.2020
2a-ab-2b
-ab+2a-2b
-(ab)+2a-2b
-(ab)-(-2a)-2b
-(ab)-(-2a)-(2b)
-(ab-2a)-(2b)
-(ab-2a+2b)
4,5(83 оценок)
Открыть все ответы
Ответ:
Tictax
Tictax
12.10.2020
∠ABD = ∠ACD = 50°

∠ACB = ∠ADB = x
∠BAC = ∠BDC = y
∠CAD = ∠CBD = z

x:y:z = 5:7:13

∠ABC = ∠ABD + ∠CAD = 50° + z
∠BCD = ∠ACB + ∠ABD = x + 50°
∠CDA = ∠BDC + ∠ADB = y + x
∠DAB = ∠CAD + ∠BAC = z + y

∠ABC + ∠BCD + ∠CDA + ∠BAD =  50 + z + x + 50 + y + x + z + y = 360°

100 + 2z + 2x + 2y = 360
x + z + y = 130
x/y = 5/7
x/z = 5/13
x + 7x/5 + 13x/5 = 130
5x = 130
x = 26
y = 36.4
z = 67.6

∠ABC = 50° + z = 50° + 67.6° = 117.6° 
∠BCD = x + 50° = 26° + 50° = 76°
∠CDA = y + x = 36.4° + 26° = 62.4°
∠DAB = z + y = 67.6° + 36.4° = 104°
4,6(64 оценок)
Ответ:
mама
mама
12.10.2020

Обратную матрицу найдем по формуле:

A^{-1}=\frac{1}{|A|}*\tilde{A^{T}},

где |A| - определитель матрицы, а \tilde{A^{T}} - транспонированная матрица алгебраических дополнений

|A|=\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]=-2+27-5-3-30-3=-16

Т.к. определитель матрицы не равен 0, то обратная матрица существует.

Находим матрицу миноров. Для каждого элемента матрицы соответствующий ему минор вычисляется по определителю матрицы 2х2, которая получается вычеркиванием соответствующей строки и столбца для этого элемента:

m_{11}=\left[\begin{array}{cc}-1&3\\5&1\end{array}\right]=-1-15=-16\\m_{12}=\left[\begin{array}{cc}1&3\\3&1\end{array}\right]=1-9=-8\\m_{13}=\left[\begin{array}{cc}1&-1\\3&5\end{array}\right]=5+3=8

m_{21}=\left[\begin{array}{cc}3&-1\\5&1\end{array}\right]=3+5=8\\m_{22}=\left[\begin{array}{cc}2&-1\\3&1\end{array}\right]=2+3=5\\m_{23}=\left[\begin{array}{cc}2&3\\3&5\end{array}\right]=10-9=1

m_{31}=\left[\begin{array}{cc}3&-1\\-1&3\end{array}\right]=9-1=8\\m_{32}=\left[\begin{array}{cc}2&-1\\1&3\end{array}\right]=6+1=7\\m_{33}=\left[\begin{array}{cc}2&3\\1&-1\end{array}\right]=-2-3=-5

Получили следующую матрицу миноров:

M=\left[\begin{array}{ccc}-16&-8&8\\8&5&1\\8&7&-5\end{array}\right]

Из матрицы миноров получим матрицу алгебраических дополнений заменой знака на противоположный у элементов матрицы миноров, у которых сумма номеров строк и столбца нечетна:

\tilde{A}=\left[\begin{array}{ccc}-16&8&8\\-8&5&-1\\8&-7&-5\end{array}\right]

Следующим шагом получаем транспонированную матрицу алгебраических дополнений:

\tilde{A^T}=\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]

Обратная матрица:

A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]

Проверим, что произведение исходной и обратной матрицы равно единичной:

A*A^{-1}=-\frac{1}{16}\left[\begin{array}{ccc}2&3&-1\\1&-1&3\\3&5&1\end{array}\right]\left[\begin{array}{ccc}-16&-8&8\\8&5&-7\\8&-1&-5\end{array}\right]=-\frac{1}{16}*\left[\begin{array}{ccc}-16&0&0\\0&-16&0\\0&0&-16\end{array}\right]=\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

4,6(23 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ