15.
Объяснение:
Рассмотрим данное выражение:
(0,5х - 3)² - 2(0,5х - 3)( 0,5х + 3) + (0,5х + 3)² - 2х - 7.
Первые три слагаемые допускают представление в виде квадрата разности. Действительно,
(0,5х - 3)² - квадрат первого выражения;
2(0,5х - 3)( 0,5х + 3) - удвоенное произведение первого и второго выражений;
(0,5х + 3)² - квадрат второго выражения.
В формуле
а² - 2аb + b² = (a -b)², тогда
(0,5х - 3)² - 2(0,5х - 3)( 0,5х + 3) + (0,5х + 3)² = ((0,5х - 3) - ( 0,5х + 3))² = (0,5х - 3 - 0,5х - 3)² = (-6)² = 36.
Рассмотрим теперь всё выражение:
(0,5х - 3)² - 2(0,5х - 3)( 0,5х + 3) + (0,5х + 3)² - 2х - 7 = 36 - 2х - 7 = 29 - 2х.
Если х=7, то
29 -2•7 = 29 - 14 = 15.
ответ: 15.
По формуле разности синусов
Подставляем
8sin x*cos(3x) = sin x*(4cos^2 (3x) + 3)
1) sin x = 0; x = pi*k; в промежуток попадают корни x1 = 0; x2 = pi
2) 4cos^2 (3x) - 8cos (3x) + 3 = 0
Квадратное уравнение относительно cos 3x
D/4 = 4^2 - 4*3 = 16 - 12 = 4 = 2^2
cos (3x)1 = (4 - 2)/4 = 1/2
x = +-1/3*(Π/3 + 2pi*n) = +-Π/9 + 2Π/3*n
В промежуток попадают корни
x3 = Π/9; x4 = 7Π/9; x5 = 11Π/9; x6 = 13Π/9
cos (3x)2 = (4 + 2)/4 = 6/4 > 1
Решений нет.
ответ: а) x1 = pi*k; x2 = +-Π/9 + 2Π/3*n
б) 0; Π; Π/9; 7Π/9; 11Π/9; 13Π/9