0,2,1/4,8/5,-3/2
Объяснение:
Заметим, что если подставим вместо переменной икс тоЮ к чему она стремится, везде(кроме второго) получим неопределенность 0/0. Такая неопределенность раскрывается либо правилом Лопиталя, но это обычно неприемлимый , либо выделением общих множителей. Итак,
1)x^2-8x+16=(x-4)^2
x^2-16=(x-4)(x+4) сократим на х-4, то х-4/х+4, подставим вместо х, то к чему он стремится, и получим 0/8, а это нуль
3)x-4=(√x-2)(√x+2), сокращаем на√x-2, получаем 1/4
4) сразу ничего очевидного нет, но мы не сдаемся, вынесем из числителя х, тогда х(4-x^2)=x(2-x)(2+x) а знаменатель разложим на множители, для этого приравняем его к нулю и найдем корни любым удобным , тогда получим корни -2 и 0.5, а значит изначальный знаменатель можно расписать как 2(x+2)(x-0,5) и вот уже видим на что можно сократить (х+2). Подставим вместо икс то, к чему он стремится, тогда -8/-5=8/5
7) sinα-sinβ=2sin(α-β)/2*cos(α+β)/2, вместо альфа 2х, вместо бетта 8х, следовательно, 2sin(-3x)*cos(5x), минус из синуса выносим как нечетность, тогда -2sin(3x)*cos(5x)/4x , теперь вычисляем как стандартный предел по частям, тогда получим 3/2 да еще минус от нечестности, -3/2
2) а теперь с бесконечность делить на бесконечность, нужно разделить на старшую степень числитель и знаменатель дроби, старшая степень 4, тогда
2+1/x+1/x^4 разделим на 3/x^2+1, теперь при подстановке вместо х бесконечности получим везде нули, кроме 2/1, а значит предел равен 2
1 вариант
№1
а) (a-5)²=a²-10a+25 б) (6a+b)²=36a²+12ab+b²
в) (4a-1)(4a+1)=16a²-1 в) (a+2b)³=a³+6a²b+6ab²+8b³
№2
(a-6)²-(36+5a)=a²-12a+36-36-5a=a²-17a
№3
а) 3x²+9xy=3x(x+3y) б) 10x⁵-5x=5x(2x⁴-1)
№4
а) (a+3)-2(a+3)=(a+3)(1-2)=-1(a+3) б) ax-ay+5x-5y=a(x-y)+5(x-y)=(x-y)(a+5)
в) a²+4ab+4b²=(a+2b)²=(a+2b)(a+2b)
№5
а) (y²-2a)(2a+y²)=y⁴-4a²
б) (3x²+x)²=9x⁴+6x³+x²
№6
а) 4x²y²-9a⁴=(2xy+3a²)(2xy-3a²) б) 25a²-(a+3)²=(5a-a-3)(5a+a+3)=(4a-3)(6a+3)
в) 27m³+n³=(3m+n)(9m²-3mn+n²)
№7
а) 9y²-25=0
9y²=25
y²=25/9
y₁,₂=±5/3=±1 2/3
б) (x+2)(x-2)-(x-3)²=-1
x²-4-x²+6x-9=-1
6x=12
x=2
№8
а) 35²-25²=(35-25)(35+25)=10*60=600
б) 299*301=299(300+1)=89700+299=8999
2)P=(6+10)*2=32(m)
3)S=6*10=60