1. Упростить выражение:1-Sin (в квадрате) альфа - Cos (в квадрате) альфа 2. Зная, что 0 < альфа < пи/2найти: Sin альфа, если Cos альфа = 1/4 Ctg альфа, если Sin альфа = 12/13 1) 1-Sin (в квадрате) альфа - Cos (в квадрате) альфа= Sin (в квадрате) альфа +Cos (в квадрате) альфа - Sin (в квадрате) альфа - Cos (в квадрате) альфа=02) 0 < альфа < пи/2 - 1четверть Sin (в квадрате) альфа +Cos (в квадрате)альфа =1Sin (в квадрате) альфа = 1- 1/16 = 15/16Sin альфа = + или - корень из 15/16т.к. синус в 1 четрерти положительный,то - корень 15/16 не удовлетворяет.ответ синус альфа =(корень 15)/4 2) Sin (в квадрате) альфа +Cos (в квадрате)альфа=1косинус(в квадрате) = 1-144/169косинус альфа = +или - 5/13т.к. косинус в 1 четвернти положительный то =5/13 не удовлетворяет.Ctg альфа = 5*13/13*12 = 5/12ответ : Ctg альфа= 5/12
Рассмотрим сразу числитель: sin 10 cos 55 + sin 280 sin 55 = sin 10 cos 55 + sin (270 + 10) sin 55 = [формулы приведения] = sin 10 cos 55 + (-cos 10) sin 55 = [sin (a-b) = sin a cos b - sin b cos a] = sin (10 - 55) = sin (-45) = - sin 45 = -√2/2 Знаменатель: sin 10 cos 110 + sin 260 cos 200 = sin 10 cos (90 + 20) + sin (270 - 10) cos (180 +20) = sin 10 (-sin 20) + (-cos 10) (-cos 20) = cos 10 cos 20 - sin 20 sin 10 = [cos(a+b) = cos a cos b - sin a sin b] = cos (10+20) = cos 30 = √3/2 Все выражение: √6 * (-√2/2) / (√3/2) = -√6*√2*2 / (2√3) = -√2 * √2 = -2
х+15 - другая сторона.
х*(х+15)=324. Решаем через дискриминант
х=12(см) - первая сторона.
12+15=27(см) - другая сторона