Для начала давайте вспомним, какие функции четные, какие нечетные, а какие ни четные, ни нечетные.
Если f(-x) = -f(x), то функция нечетная.
Если f(-x) = f(x), то функция четная.
Если же вышеперечисленные критерии не соблюдаются, то функция ни четная ни нечетная (функция общего вида).
Что же, тогда приступим.
____________________
Найдем F(-x):
F(-x) = - x³ + 4ctgx
F(-x) = - (x³ - 4ctgx)
Т.е, выполняется условие нечетной функции. f(-x) = -f(x) НЕЧЕТНАЯ
____________________
Найдем F(-x):
Не соблюдается ни одно из наших критериев. Следовательно наша функция НИ ЧЕТНАЯ НИ НЕЧЕТНАЯ.
Для начала давайте вспомним, какие функции четные, какие нечетные, а какие ни четные, ни нечетные.
Если f(-x) = -f(x), то функция нечетная.
Если f(-x) = f(x), то функция четная.
Если же вышеперечисленные критерии не соблюдаются, то функция ни четная ни нечетная (функция общего вида).
Что же, тогда приступим.
____________________
Найдем F(-x):
F(-x) = - x³ + 4ctgx
F(-x) = - (x³ - 4ctgx)
Т.е, выполняется условие нечетной функции. f(-x) = -f(x) НЕЧЕТНАЯ
____________________
Найдем F(-x):
Не соблюдается ни одно из наших критериев. Следовательно наша функция НИ ЧЕТНАЯ НИ НЕЧЕТНАЯ.
1) ах^2+вх=0, т.е. с=0, то для решения выносим за скобки х:
х(ах+в) =0.
Произведение равно равно нулю, если хотя бы один из множителей равен нулю.
Получаем:
х=0 или ах+в=0
х=0 или х=-в/а - искомые решения.
2) ах^+с=0, т. е. в=0, то имеем два случая:
а) а и с - одного знака: уравнение в этом случае решений не имеет, т.к. для любого х ах^2+с>0.
б) а и с - разных знаков: используем формулу разность квадратов
Произведение равно нулю, если хотя бы один из множителей равен нулю, т. е.
Откуда,
х=-√с/√а или х=√с/√а - искомые решения.