М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
oobostoo
oobostoo
20.12.2020 20:45 •  Алгебра

Решите, и объясните какрешать 18б выписаны первые несколько членов прогрессии: -1250; -250; -50; найдите сумму первых пяти её членов .

👇
Ответ:
DIPPER1112
DIPPER1112
20.12.2020
B₁ = -1250;
b₂ = - 250;
b₃ = - 50
Найти S₅

1) Находим знаменатель прогрессии 
q = b₂ : b₁
d= -250:(-1250) = 0,2
2) Находим пятый член прогрессии
b₅ = b₁*q⁴
b₅ = - 1250*0,2⁴ = -1250*0,0016 = - 2
3) Формула суммы первых членов прогрессии
S_{n}= \frac{ b_{n} q- b_{1} }{q-1}
Эта формула для первых пяти
S_{5}= \frac{b_{5} q- b_{1} }{q-1}
S_{5}= \frac{-2*0,2-(-1250)}{0,2-1}= \frac{-0,4+1250}{-0,8}= \frac{1249,6}{-0,8}=-1562

ответ:-1562
4,6(95 оценок)
Открыть все ответы
Ответ:
ALEXDEMI777
ALEXDEMI777
20.12.2020

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

            Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

            Не будем требовать от школьников невозможного и предложим один из алгоритмов решения подобных задач.

            Итак, функция вида y = ax2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax2. То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.

            Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

            Самая зависимость для коэффициента а. Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, – то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

 

4,6(59 оценок)
Ответ:
viktoria123987650
viktoria123987650
20.12.2020

Задания на свойства и графики квадратичной функции вызывают, как показывает практика, серьезные затруднения. Это довольно странно, ибо квадратичную функцию проходят в 8 классе, а потом всю первую четверть 9-го класса "вымучивают" свойства параболы и строят ее графики для различных параметров.

            Это связано с тем, что заставляя учащихся строить параболы, практически не уделяют времени на "чтение" графиков, то есть не практикуют осмысление информации, полученной с картинки. Видимо, предполагается, что, построив десятка два графиков, сообразительный школьник сам обнаружит и сформулирует связь коэффициентов в формуле и внешний вид графика. На практике так не получается. Для подобного обобщения необходим серьезный опыт математических мини исследований, которым большинство девятиклассников, конечно, не обладает. А между тем, в ГИА предлагают именно по графику определить знаки коэффициентов.

            Не будем требовать от школьников невозможного и предложим один из алгоритмов решения подобных задач.

            Итак, функция вида y = ax2 + bx + c называется квадратичной, графиком ее является парабола. Как следует из названия, главным слагаемым является ax2. То есть а не должно равняться нулю, остальные коэффициенты (b и с) нулю равняться могут.

            Посмотрим, как влияют на внешний вид параболы знаки ее коэффициентов.

            Самая зависимость для коэффициента а. Большинство школьников уверенно отвечает: " если а > 0, то ветви параболы направлены вверх, а если а < 0, – то вниз". Совершенно верно. Ниже приведен график квадратичной функции, у которой а > 0.

y = 0,5x2 - 3x + 1

В данном случае а = 0,5

А теперь для а < 0:

 

4,7(44 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ