М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
IIIayni
IIIayni
26.08.2022 07:58 •  Алгебра

Постройте график функции : y=(x^2-4)^2-(x^2+1)^2 желательно с чертежом, !

👇
Ответ:
lord50
lord50
26.08.2022
Y=(x^2-4)^2-(x^2+1)^2;
ответ:
y = - 10x^2+15
x принадлежит R (принадлежит это э наоборот)
пересечение с осью y: (0; 15)
сделай ответ лучшим это точный ответ
Постройте график функции : y=(x^2-4)^2-(x^2+1)^2 желательно с чертежом, !
4,6(27 оценок)
Открыть все ответы
Ответ:
ssha2
ssha2
26.08.2022

Объяснение:Находим критические точки данной функции.

Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.

у' = (-х^2 + 6х + 7)' = -2x + 6.

-2x + 6 = 0;

2x = 6;

x = 6 / 2 = 3.

Следовательно, точка х = 3 является критической точкой данной функции.

Находим значение второй производной данной функции в точке х = 3.

у'' = (-2x + 6)' = -2.

Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.

Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).

ответ: данная функция убывает на промежутке (3; +∞).

4,8(45 оценок)
Ответ:
PavelSvyatelik2017
PavelSvyatelik2017
26.08.2022

Объяснение:Находим критические точки данной функции.

Для этого находим производную данной функции и находим точки, в которых эта производная обращается в 0.

у' = (-х^2 + 6х + 7)' = -2x + 6.

-2x + 6 = 0;

2x = 6;

x = 6 / 2 = 3.

Следовательно, точка х = 3 является критической точкой данной функции.

Находим значение второй производной данной функции в точке х = 3.

у'' = (-2x + 6)' = -2.

Так как вторая производная данной функции отрицательна во всех точках, то она отрицательна и в точке х = 3, следовательно, в этой точке функция у = -х^2 + 6х + 7 достигает своего локального максимума.

Следовательно, данная функция возрастает на промежутке (-∞; 3) и убывает на промежутке (3; +∞).

ответ: данная функция убывает на промежутке (3; +∞).

4,7(22 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ