9x + 8x² = -1
8x² + 9x + 1 = 0
D = 81 - 32 = 49
x1 = (-9+7)/16 = -0,125
x2 = (-9-7)/16= -1
ответ: -1; -0,125
3 + 3x² = 4x
3x² - 4x + 3 = 0
D = 16 - 36 = - 20 => D < 0 => нет корней
ответ: нет корней
25 - 10x + x² =0
D = 100 - 100 = 0
x = 10/2 = 5
ответ: 5
4x - 4x² = 0
x(4 - 4x) = 0
1)x = 0
2)4 - 4x = 0
4x = 4
x = 1
ответ: 0; 1.
3x² - 12 = 0
3x² = 12
x² = 12/3 = 4
x = ±2
ответ: ±2
9x² + 8 = 18x
9x² - 18x + 8 = 0
D = 324 - 288 = 36
x1 = (18+6)/18 = 24/18 = 1 1/3 (одна целая одна третья)
x2 = (18-6)/18 = 12/18 = 2/3
ответ: 2/3; 1 1/3
c² + c = 6
c² + c - 6 = 0
D = 1 + 24 = 25
x1 = (-1+5)/2 = 2
x2 = (-1-5)/2 = -3
ответ: -3; 2
В решении.
Объяснение:
Сначала нужно раскрыть скобки, потом привести подобные члены, потом перенести неизвестное влево, известное вправо и вычислить неизвестную величину.
1) (3y-1)-(2y+4)+y=33
3у-1-2у-4+у = 33
2у = 33+5
2у=38
у=38/2
y= 19;
2) 15x=(6x-1)-(x+18)
15х = 6х-1-х-18
15х-5х = -19
10х = -19
х= -19/10
х= -1,9;
3) 17p-8-(p+7)+15p=0
17p-8-p-7+15p=0
31p = 15
p=15/31;
4) (6m-4)-(7m+7)-m=1
6m-4-7m-7-m = 1
-2m = 1+11
-2m = 12
m= 12/-2
m= -6.
Проверка путём подстановки вычисленных значений х, у, p и m в уравнения показала, что данные решения удовлетворяют данным уравнениям.
ҚҚҚҚҚҚҚҚҚҚҚҚҚ