В первую очередь нарисуй рисунок. Обе линии являются параболами. Только у первой параболы "рога" направлены вниз, а у второй - вверх. Эти параболы пересекаются в 2 точках. Точки пересечения можно найти приравняв уравнения кривых друг другу: 3-x^2 = 2x^2 Получаете простое квадратное уравнение и решаете его. Находите две точки пересечения - корни уравнения х1 = а, х2 = b, (При этом а < b). Поставьте эти точки на рисунке и проведите из них вертикальные прямые к точкам пересечения парабол - х = а и х = b . А теперь сделайте так - заштрихуйте косой штриховкой фигуру, ограниченную линиями: у = 3-x^2, у = 0, х = а, х = b А теперь заштрихуйте обратной косой штриховкой фигуру, ограниченную линиями: y=2x^2, у = 0, х = а, х = b В результате эта фигура будет заштрихована в клеточку, а та фигура, площадь которой мы ищем в полосочку ( обычной косой штриховкой) . Для того, чтобы найти площадь фигуры, заштрихованной в клеточку достаточно вычислить определенный интеграл от функции (2x^2)dx в пределах от а до b. А для того, чтобы вычислить площадь фигуры, заштрихованной обоими видами штриховки, надо вычислить определенный интеграл от функции (3 - x^2)dx в пределах от a до b. Если Вы честно нарисовали рисунок, то, посмотрев на рисунок, Вы сразу догадаетесь, как найти площадь фигуры заштрихованной в полосочку, зная площади фигур заштрихованных в клеточку и обоими видами штриховки. Удачи!
x*(49x²+14x+1)=0
x₁=0 или (7x+1)²=0
7x+1=0
x₂=
ответ:-1/7;0.
2) x³-5x²-x+5=0
x²*(x-5)-1*(x-5)=0
(x²-1)*(x-5)=0
(x-1)*(x+1)*(x-5)=0
x₁=1 или x₂=-1 или x₃=5
ответ: -1;1;5.
3)x³-3x²+3x-2=0
(x-1)³-1=0
(x-1)³=1
x-1=1
x=2
ответ: 2.