Для отыскания наибольшего(наименьшего) значения функции существует один и тот же приём:
1) ищем производную.
2) приравниваем её к нулю и ищем корни.
3) смотрим , какие корни входят в указанный промежуток.
4)ищем значения данной функции на концах указанного промежутка и в точках, входящих в указанный промежуток.
5) пишем ответ.
Начали.
y = x³ -3x² +7x -5 [1;4]
y' = 3x² -6x +7
3x² -6x +7 = 0
D<0 корней нет
х = 1
у = 3*1² -6*1 +7 *1 -5 = -1
х = 4
у = 3*4³ -3*4²+7*4 -5 = 192 - 48 +28 -5 = 163
ответ: max y = 163
min y = -1
(1-x1)/(y1+3)=1/3
(1-x2))/(y2+3)=1/3
Но так как при этом точки касания принадлежат окружности, то их координаты должны удовлетворять и её уравнению. Поэтому к написанной выше системе добавляются ещё два уравнения:
(x1-1)²+(y1+3)²=40
(x2-1)²+(y2+3)²=40
Решая теперь получившуюся систему из 4-х уравнений, находим x1=-1⇒y1=3 либо x1=3⇒y1=-9. А так как для x2 и y2 уравнения точно такие, как для x1 и y1, то и решения получаются одинаковыми: x2=x1, y2=y1. Так и должно быть, потому что окружность имеет лишь две касательных, перпендикулярных данной прямой - соответственно и точек касания будет лишь две. Составляем теперь уравнения касательных: y-3=1/3*(x+1) и y+9=1/3*(x-3). Эти уравнения приводятся к виду x-3*y+10=0 и x-3*y-30=0. ответ: x-3*y+10=0, x-3*y-30=0.