Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
1) 0,9:4 = 0,225 (р/час)- производительность 2 слесарей вместе.
Пусть за х часов выполнит работу первый слесарь и (х+2) часов - выполнит второй.
Производительность первого и второго равна 0,225. Произв. первого = 1/х,
второго 1/2+х.
Складываем уравнение:
1/х + 1/(2+х)= 0,225
(х+2)+х 2х+2
= = 0,225
х в кв.+2х х в кв. +2х
2х+2 = 0,225*(х в кв.+2х)
2х+2 = 0,225х в кв. +0,45х
0,225х в кв.-1,55х-2 =0
D = 1,55*1,55-4*(-2)*0,225 = 2,40+1,8 = 4,20
корень из 4,20 = 2,05
х1 = (1,55+2,05)/0,45 = 8
х2 = (1,55-2,05)/0,45 = -1,11 - не является решением.
х = 8 (часов)- выполнит работу первый слесарь.
8+2 = 10 (часов)- выполнит второй.
Проверяем:
1/10 + 1/8 =0,1+0,125 = 0,225
ответ: за 8 часов выполнит этот заказ первый слесарь и за 10 часов выполнит второй.
х в кв. - икс в квадрате
1)-36+12х-6=-42+12х
2)9ху(1-3у^2+6х
3)(5x-y)(5x+y)
4)576-168x+296=872-168x
Как то так, удачи)