1. пятый член возрастающей прогрессии(bn) равен 7, а седьмой член равен 112. найдите знаменатель этой прогрессии. 2. найдите сумму семи первых членов прогрессии, если первый член равен 2, а знаменатель прогрессии равен -2.
10/(x-a) - 1 <= 0 (10 - (x-a)) / (x-a) <= 0 дробь меньше нуля, когда числитель и знаменатель имеют разные знаки... x-a < 0 10 - (x-a) >= 0 или x-a > 0 10 - (x-a) <= 0
решение первой системы: x-a < 0 x-a <= 10 x-a < 0 решение второй системы: x-a > 0 x-a >= 10 x-a >= 10 решение первого неравенства: x < a или x >= a+10 (два луча))) второе неравенство равносильно двойному неравенству: -4 <= x-3a <= 4 3a-4 <= x <= 4+3a (один отрезок))) если отметить все значения на числовой прямой, то станет очевидно, что расстояние между концами первых двух лучей 10 единиц, длина отрезка-решения второго неравенства = (4+3a)-(3a-4) = 8 единиц система будет иметь единственное решение, когда эти лучи и отрезок имеют только одну общую точку... это условие: 3a+4 = 10+a (правый край отрезка = левому краю луча (правого))) 2a = 6 a = 3
Решение: Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет: (а-3)/а Если к числителю прибавим 3, то числитель станет равным: (а-3+3)=а, а к знаменателю прибавим два знаменатель примет значение: (а+2) сама дробь представит в виде: а/(а+2) А так как получившаяся дробь увеличится на 7/40 , составим уравнение: а/(а+2) - (а-3)/а=7/40 Приведём уравнение к общему знаменателю (а+2)*а*40 а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а 40а²- 40*(а²+2а-3а-6)=7*(а²+2а) 40а²-40а²+40а+240=7а²+14а 7а²+14а-40а-240=0 7а²-26а-240=0 а1,2=(26+-D)/2*7 D=√(26²-4*7*-240)=√(676+6720)=√7396=86 а1,2=(26+-86)/14 а1=(26+86)/14=112/14=8 а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи Подставим значение а=8 в дробь (а-3)/а (8-3)/8=5/8