Центральный угол правильного многоугольника - это угол между двумя лучами, проведенными из центра многоугольника к двум его соседним вершинам. Центр правильного многоугольника совпадает с центром описанной окружности, значит, центральный угол, образованный двумя радиусами, проведенными к двум соседним вершинам, равен центральному углу многоугольника.
У правильного n-угольника n равных сторон, значит, будет n равных центральных углов.
Для двенадцатиугольника
360° : 12 = 30°
Внешний угол правильного многоугольника равен центральному углу.
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Запишем заданное выражение в виде :
(x + y - 3)² + (x - 5)² + 2018
это выражение принимает наименьшее значение, когда квадраты, то есть первые две скобки равны нулю.
(x - 5)² равно нулю при x = 5 , а если x = 5 , то из первой скобки (x + y - 3)², подставив вместо х число 5, получим, что для того, чтобы и эта скобка равнялась нулю, y должен равняться - 2 . Если первые две скобки равны нулю, то значение выражения равно 2018 - это и будет наименьшим значением.
ответ : x = 5 , y = - 2 , наименьшее значение 2018