Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов.
Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час).
За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение:
12*(1/x + 1/(x+10)) = 1.
Умножаем левую и правую части на x(x+10):
12(x+10) + 12x = x(x+10);
x² + 10x − 24x − 120 = 0;
x² − 14x − 120 = 0.
Выбираем положительное значение x:
x = 7 + √(49+120) = 20.
Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа.
Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok).
ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.
(1,5; -13,75)
Объяснение:
Найдем производную функции:
у'= -2х+3
Приравняем к нулю
-2х+3=0
х=1,5 - экстремум
подставляем х=1,5 в исходную функию
у= -1*2,25+4,5-16= -13,75
Координаты вершины: (1,5; -13,75)
Для чего мы находим производную функции? Находжение производной, другими словами есть - дифференцирование, смысл которого заключается в том, что оно позволяет нам определить динамику изменнения графика функции, проще говоря - наклон её кривой относительно осей координат. Если посмотреть на график классической параболы, то мы видим, что в точке, где она изгибается и меняет направление относительно оси у, направление ее кривой на бесконечно коротком промежутке (который и есть точка) становится горизнтальным. Как раз этот "горизонтальный" участок мы и ищем, когда приравниваем производную к нулю. Мы находим такой х, при котором график функции меняет направление с убывания на возрастание или наоборот. Затем, подставив, найденное значение х в исходную функцию, мы можем наконец определить координаты такого экстремума (или пика).
вопрос: "зачем" неполное квадратное уравнение решать через дискриминант пропустим))
ответ: по формуле...
D = b² - 4*a*c
a = 1; b = 0; с = -25;
D=-4*(-25) = 100
x1 = (0+√100) / 2 = 10/2 = 5
x2 = (0-√100) / 2 = -10/2 = -5
решить можно и проще...