{√x+√y=4 {√x*√y=3 ОДЗ: х≥0 у≥0 Обе части первого уравнения возведём в квадрат: {(√x+√y)² = 4² {√x*√y=3 { x + 2√х*√y + у = 16 {√x*√y = 3 Из второго уравнения произведение √х*√у =3 подставим в первое. x + 2*3 + y = 16 х + у = 16 - 6 х + у = 10 у = 10-х Подставим значение у = 10-х во второе и получим: √х*√(10-х) = 3 Возводим в квадрат обе части уравнения: х(10-х) = 3² 10х - х² = 9 х² - 10х + 9 = 0 D = b² - 4ac D = 100 - 4*1*9=100 - 36 = 64 √D = √64 = 8 x₁ = (10+8)/2 = 18/2 = 9 x₂ = (10-8)/2 = 2/2 = 1 Подставим в уравнение у = 10-х значения х₁=9 и х₂=1 и найдём у. у₁ = 10-9=1 у₂= 10-1=9 Все значения удовлетворяют ОДЗ. x₁=9; y₁=1 x₂=1; y₂=9 ответ: {9; 1}; {1; 9}
Объяснение:
* * * * * * * * * * * * * * * * * * * * *
ответ: 4) 15 ; 5) a₁ = -14 , d=3 или a₁ =2, d=3 ; 7) 30 c .
Объяснение:
4) 6x -5= ( (2x+1) +(9x+3) ) /2 ⇔12x -10 =11x + 4 ⇔ 12x -11x= 4+10 ⇒ x=15.
5) { a₄ - a₂ = 6 ; a₂*a₄= 55. ⇔{ (a₁+3d) - (a₁+d)=6 ; (a₁+3d) *(a₁+d)=55⇔
{ 2d=6 ; (a₁+3d) *(a₁+d)=55 ⇔{ d=3 ; (a₁+3*3) *(a₁+3)=55 ⇔
{ d=3 ; (a₁+9) *(a₁+3)=55. ⇔{ d=3 ; a₁² +4a₁ -28= 0⇔{ d=3 ; [a₁=2 a₁² +4a₁ -28= a₁² +4a₁ -28= 0 ⇒ [ a₁ = -14 ; a₁ =2 .
7). a₁=4,9 (м) ; d = 9,8 (м) ; S = 4410 (м)
S =(2a₁+ (n -1)d) *n/2
4410 =(2*4,9 +(n-1)*9,8 ) *n/2⇔ 4410 =4,9*n² ⇔n²=44100/49 = 900 ⇒
n =30 (с) .
-4х=19
х=19:-4
х=-4,75