В 1) задаче смотри рисунок...проводим две высоты к большому основанию они отсекут два отрезка (эти отрезки маленькие называются полуразность оснований) то есть они равны каждый (49-15)/2=34/2=17 видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34 периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда (2х+3х)/2=5 5х=10 х=2 2*2=4 меньшее основание 3*2=6 большее
Пусть К, Р, M, N - середины сторон соответственно АВ, BC, CD, AD, тогдаВ ΔABD: AK = KB, AN = ND ⇒ KN - средняя линия" Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны "KN || BD, KN = BD/2В ΔBCD: BP = PC, CM = MD ⇒ PM - средняя линияPM || BD, PM = BD/2Значит, KN || PM , KN = PMИз этого следует, что четырёхугольник KPMN - параллелограмм (по признаку параллелограмма)KN = BD/2 , KP = AC/2Р kpmn = 2•(KN + KP) = 2•(BD/2 + AC/2) = BD + AC = 12 + 10 = 22 смОТВЕТ: Р = 22 см
видим что в маленьких треугольниках один угол 60 градусов второй 90 значит третий=180-90-60=30 напротив этого угла как раз и лежит катет=17 значит боковая сторона (гипотенуза)=17*2=34
периметр=2*34+15+49=68+64=132
2) обозначим основания как 2х и 3х тогда
(2х+3х)/2=5
5х=10
х=2
2*2=4 меньшее основание
3*2=6 большее