ответ: v1=600 м/мин.
Объяснение:
Пусть v1, v2, v3 (м/мин) - скорости конькобежцев, t (мин) - время с момента старта, через которое второй конькобежец обогнал первого. Из условия задачи следует, что v2>v1>v3. Пусть q - знаменатель возрастающей геометрической прогрессии, тогда v1=v3*q и v2=v3*q². Имеем систему уравнений:
v2*t=v1*t+400
v1*t=v3*(t+2/3)
v1=v3*q
v2=v3*q²
Из 3-го и 4=го уравнений находим v2=v1*q и v3=v1/q. Подставляя эти выражения в первое и второе уравнения, получаем систему:
v1*q*t=v1*t+400
v1*t=v1/q*(t+2/3)
Умножая второе уравнение на q, приходим к системе:
v1*q*t=v1*t+400
v1*q*t=v1*t+2/3*v1.
Вычитая из второго уравнения первое, находим 2/3*v1=400, откуда v1=600 м/мин.
P(x,y)=ln(y)-5*y²*sin(5*x)=du/dx
Q(x,y)=x/y+2*y*cos(5*x)=du/dy,
где du/dx и du/dy - частные производные от искомой функции u(x,y).
Интегрируя первое уравнение системы по x, находим u(x,y)=ln(y)*∫dx-5*y²*∫sin(5*x)*dx=x*ln(y)-y²*cos(5*x)+f(y), где f(y) - неизвестная пока функция от y. Дифференцируя теперь это равенство по y, находим du/dy=x/y-2*y*cos(5*x)+f'(y). А так как du/dy=Q(x,y)=x/y-2*y*cos(5*x), то отсюда f'(y)=0 и соответственно f(y)=C1, где С1 - произвольная постоянная. Значит, u(x,y)=x*ln(y)-y²*cos(5*x)+C1. Но так по условию du=0, то u=const=C2, где C2 - также произвольная постоянная. Отсюда получаем равенство x*ln(y)-y²*cos(5*x)=C, где C=C2-C1. Это и есть решение данного уравнения. ответ: x*ln(y)-y²*cos(5*x)=C.