Вспомним предназначение и смысл формул сокращенного умножения. Ранее мы изучали и повторили достаточно трудоемкую операцию умножения многочленов, ее сложность заключается в том, что многочлен – это сумма одночленов, и для умножения нужно каждый член первого многочлена умножить на каждый член второго многочлена. В результате получаем достаточно большой многочлен, который нужно привести к стандартному виду. Формулы сокращенного умножения как раз упрощают операцию умножения многочленов.Приведем некоторые формулы: – квадрат суммы (разности); – разность квадратов; – разность кубов; – сумма кубов; называют неполным квадратом суммы; называют неполным квадратом разности;Отличие последних двух выражений от полного квадрата состоит в том, что в полном квадрате есть удвоенное произведение выражений, а в неполном – просто их произведение.
1) 10a + b = a + b^2 10a - a = b^2 - b 9a = b*(b - 1) Есть варианты: а) b = 9; a = b - 1 = 8; a + b = 8 + 9 = 17 б) b - 1 = 9; a = b = 9 + 1 = 10 - не может быть. в) b = 3; b - 1 = 2 = 3a - не может быть. г) b - 1 = 3; b = 4 = 3a - не может быть. Других вариантов быть не может. ответ: 17
2) 44^5 * 55^12 = 4^5*11^5 * 5^12*11^12 = 4^5*5^10*5^2*11^17 = = (4*25)^5*25*11^17 = A 11^17 ~ 5*10^18 A = 100^5*25*5*10^18 = 125*10^28 Это число имеет 30 знаков.
3) Не понятно, что такое k2x. Может, это k в квадрате, умноженное на x? Или что-то другое?
4) |3 - x| + |2x + 4| - |x + 1| = 2x + 4 Это уравнение можно свести к |3 - x| = x + 1 У него только один корень: x = 1 ответ: 1 корень
D=36-36=0
a=6/2=3
ответ: a=3
или же:
a²-6a+9=0
(a-3)²=0
a-3=0
a=3