М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mansurislamov
mansurislamov
16.10.2022 09:24 •  Алгебра

Преобразуйте выражение в многочлен 1. (3x-5a)(5a-3x) 2. (3x-5a)^2 3. (3x-5a)^3 4. (3x-5y+2)^2 5. (3x-5y)(9x^2+15xy+25y^2)

👇
Ответ:
sisennova03
sisennova03
16.10.2022
Что токое - ^ если вы написали нармально тогда я бы бы
4,6(63 оценок)
Открыть все ответы
Ответ:
ekaterina7201
ekaterina7201
16.10.2022
Хорошо, давайте решим задачу.

Перед тем, как приступить к нахождению производных данных функций, давайте вспомним несколько правил дифференцирования:

1. Производная константы равна нулю. Если у нас есть функция f(x) = c, где c - любая константа, то ее производная равна нулю: f'(x) = 0.

2. Производная функции вида f(x) = x^n (где n является целым числом) равна n * x^(n-1).

3. Производная суммы (или разности) функций равна сумме (или разности) производных этих функций. Если у нас есть функции f(x) и g(x), то
(f(x) +/- g(x))' = f'(x) +/- g'(x).

4. Если у нас есть функция f(x) и число a, то производная a * f(x), где a - константа, равна a * f'(x).

5. Производная произведения функций. Если у нас есть функции f(x) и g(x), то производная их произведения равна:
(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x).

6. Производная отношения функций. Если у нас есть функции f(x) и g(x), то производная их отношения равна:
(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / (g(x))^2.

Теперь давайте перейдем к решению задачи.

1.1) f(x) = 3x - sqrt(3)

Первое, что делаем, находим производную каждого слагаемого:
f'(x) = (3x)' - (sqrt(3))'.

Следуя правилу 2, производная слагаемого 3x равна 3, а производная корня из 3 равна 0, так как это константа.

Итак, f'(x) = 3 - 0 = 3.

1.2) f(x) = x^3 - sqrt(3x)

Аналогично предыдущему шагу, находим производную каждого слагаемого:
f'(x) = (x^3)' - (sqrt(3x))'.

Следуя правилу 2, производная x^3 равна 3x^2. Для нахождения производной корня из 3x, мы должны использовать правило 5:
(sqrt(3x))' = (3x)^(1/2)' = (1/2)(3x)^(-1/2) * (3x)' = (1/2)(3x)^(-1/2) * 3.

Итак, f'(x) = 3x^2 - (1/2)(3x)^(-1/2) * 3.

1.3) f(x) = x^2 + 3x - sqrt(2)

Аналогично предыдущим шагам:
f'(x) = (x^2)' + (3x)' - (sqrt(2))'.

Правило 2 говорит нам, что производная x^2 равна 2x. Производная слагаемого 3x равна 3, а производная корня из 2 равна 0.

Итак, f'(x) = 2x + 3 - 0 = 2x + 3.

1.4) f(x) = x^3 - sqrt(7x) + п

Аналогично предыдущим шагам:
f'(x) = (x^3)' - (sqrt(7x))' + (п)'.

Правило 2 говорит нам, что производная x^3 равна 3x^2. Для нахождения производной корня из 7x, мы должны использовать правило 5:
(sqrt(7x))' = (7x)^(1/2)' = (1/2)(7x)^(-1/2) * (7x)' = (1/2)(7x)^(-1/2) * 7.

Итак, f'(x) = 3x^2 - (1/2)(7x)^(-1/2) * 7 + 0 = 3x^2 - (7/2)(7x)^(-1/2).

1.5) f(x) = 5x^(-4) + 2x - sqrt(5)

Аналогично предыдущим шагам:
f'(x) = (5x^(-4))' + (2x)' - (sqrt(5))'.

Производная слагаемого 5x^(-4) с помощью правила 2 равна -20x^(-5). Производная слагаемого 2x равна 2, а производная корня из 5 равна 0.

Итак, f'(x) = -20x^(-5) + 2 + 0 = -20x^(-5) + 2.

1.6) f(x) = (2/5)x^5 - sqrt(3^x^2) - 7.

Аналогично предыдущим шагам:
f'(x) = ((2/5)x^5)' - (sqrt(3^x^2))' - (7)'.

Производная слагаемого (2/5)x^5 с помощью правила 4 равна (2/5) * 5x^4 = 2x^4.

Для нахождения производной корня из 3^x^2, мы должны использовать правило 5:
(sqrt(3^x^2))' = (3^x^2)^(1/2)' = (1/2)(3^x^2)^(-1/2) * (3^x^2)' = (1/2)(3^x^2)^(-1/2) * 3^x^2 * (3^x^2)'.

Нам нужно найти производную 3^x^2, применяя правило 2:
(3^x^2)' = 2x * 3^(x^2-1).

Итак, f'(x) = 2x^4 - (1/2)(3^x^2)^(-1/2) * 3^x^2 * (2x * 3^(x^2-1)) - 0 = 2x^4 - x * sqrt(3^x^2) * 3^(x^2-1).

Теперь перейдем ко второй части задачи.

2.1) f(x) = 3x(x - 1)

Мы должны применить правило 3:
f'(x) = (3x)' * (x - 1) + 3x * (x - 1)'.

Правило 3 говорит нам, что производная слагаемого 3x равна 3, а производная (x - 1) равна 1, так как это константа.

Итак, f'(x) = 3 * (x - 1) + 3x * 1 = 3x - 3 + 3x = 6x - 3.

2.2) f(x) = x^2(x^3 - sqrt(3x))

Мы должны применить правило 3:
f'(x) = (x^2)' * (x^3 - sqrt(3x)) + x^2 * (x^3 - sqrt(3x))'.

Правило 2 говорит нам, что производная x^2 равна 2x.

Для нахождения производной корня из 3x, мы должны использовать правило 5:
(sqrt(3x))' = (3x)^(1/2)' = (1/2)(3x)^(-1/2) * (3x)' = (1/2)(3x)^(-1/2) * 3.

Итак, f'(x) = 2x * (x^3 - sqrt(3x)) + x^2 * ((x^3 - sqrt(3x))' + 0 = 2x^4 - x^2 * (1/2)(3x)^(-1/2) * 3 + 0 = 2x^4 - (3/2)x^(3/2).

2.3) f(x) = (x^2 + 3)(x - 5)

Мы должны применить правило 3:
f'(x) = (x^2 + 3)' * (x - 5) + (x^2 + 3) * (x - 5)'.

Правило 2 говорит нам, что производная x^2 равна 2x.

Производная слагаемого 3 равна 0, так как это константа.

Итак, f'(x) = (2x) * (x - 5) + (x^2 + 3) * 1 = 2x^2 - 10x + x^2 + 3 = 3x^2 - 10x + 3.

2.4) f(x) = 2/x - sqrt(7x)

Мы должны применить правило 3:
f'(x) = (2/x)' - (sqrt(7x))' = -2/x^2 - (sqrt(7x))'.

Правило 2 говорит нам, что производная x^(-1) равна -1/x^2.

Для нахождения производной корня из 7x, мы должны использовать правило 5:
(sqrt(7x))' = (7x)^(1/2)' = (1/2)(7x)^(-1/2) * (7x)' = (1/2)(7x)^(-1/2) * 7.

Итак, f'(x) = -2/x^2 - (1/2)(7x)^(-1/2) * 7 = -2/x^2 - (7/2)x^(-1/2).

2.5) f(x) = x - 2/x + 3 - 5x

Мы должны применить правило 3:
f'(x) = (x)' - (2/x)' + (3)' - (5x)' = 1 + 2/x^2 + 0 - 5.

Итак, f'(x) = 1 + 2/x^2 - 5 = -4 + 2/x^2.

2.6) f(x) = x^2 - 2x/x - 4 - 3x + 2

Мы должны применить правило 3:
f'(x) = (x^2)' - (2x/x - 4)' - (3x)' + (2)' = 2x - (2x/x^2 - 4)' - 3 + 0.

Правило 2 говорит нам, что производная x^(-1) равна -1/x^2.

f'(x) = 2x - (-2x/x^2)' - 3 = 2x - (2x^(-1))' - 3 = 2x + 2/x^2 - 3.

Таким образом, мы нашли производные данных функций и ответили на все вопросы задачи.
Если у вас возникнут вопросы или сложности - не стесняйтесь задавать. Я готов помочь!
4,5(33 оценок)
Ответ:
nikoleller
nikoleller
16.10.2022
Школьнику,
Для построения графика функции y = f(x) на отрезке (-4; 3) мы будем использовать данные, представленные в таблице. Нам также дано, что f(0) = 2.

1. Вначале построим оси координат на бумаге. Ось x будет горизонтальной, а ось y - вертикальной. Разметим ось x от -4 до 3 и ось y от -5 до 5.

2. Теперь посмотрим на таблицу и найдем соответствующие значения x и y. Мы имеем следующие пары значений:
- x = 1, y = 1
- x = 3, y = -3
- x = -4, y = 4

3. Начнем с первой пары значений (x = 1, y = 1). На оси координат отметим точку с координатами (1, 1). Это будет первая точка на графике.

4. Перейдем ко второй паре значений (x = 3, y = -3). На оси координат отметим точку с координатами (3, -3). Это будет вторая точка на графике.

5. Перейдем к третьей паре значений (x = -4, y = 4). Отметим точку с координатами (-4, 4) на графике.

6. Теперь соединим эти три точки линией. Полученная кривая будет графиком функции y = f(x) на отрезке (-4; 3).

7. Наконец, учтем информацию, что f(0) = 2. На графике найдем точку с координатами (0, 2) и отметим ее на графике.

Процесс построения графика функции y = f(x) на отрезке (-4; 3) завершен. Теперь вы можете видеть, как меняется значение функции в зависимости от значения x на данном отрезке. Следуйте этому процессу для других функций и не забывайте учитывать все имеющиеся данные.
4,7(70 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ