М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marha18
marha18
14.07.2022 22:34 •  Алгебра

4х^2+у^2=29 2x-y=7 решить систему уравнений ,

👇
Ответ:
raz1508
raz1508
14.07.2022
4х^2+y^2=29
x=7y/2
y^2+14y+49+y^2=29
y=-5     y=-2

x=7y/2
x=1
x=2.5
4,5(83 оценок)
Ответ:
Ваня111111222
Ваня111111222
14.07.2022
4x^2+y^2=29
y=-7+2x

4x^2+(-7+2x)^2=29
4x^2+4x^2-28x+49=29
x=5/2
x=1
y=-7+2
y=-7+2*5/2
y=-2
y=-5
4,4(89 оценок)
Открыть все ответы
Ответ:
Баянсулу11
Баянсулу11
14.07.2022

делается очень и очень просто.. последняя цифра определяется степенями последней цифры в числе, то есть цифрой 7 в вашем случае 
записываем последние цифры возведения в степень (^ и есть значок возведения в степень) 
0) 7^0=1 
1) 7^1=7 
2) 7^2=..9 
3) 7^3=..9*7=..3 
4) 7^4=..3*7=..1 
5) 7^5=..1*7=..7 
далее все будет повторяться (то есть 9, 3 и так далее) 
период повторения последней цифры равен 4, теперь осталось найти остаток от деления степени 4207 на 4 - он будет равен 3, что очевидно (4204 делится на 4 без остатка). 
значит последняя цифра от 2017^4207 будет (смотрим в таблицу на строку 3)) 3 

4,8(80 оценок)
Ответ:
dhvcn
dhvcn
14.07.2022

а).

Приведем пример:

2 + 7 + 72 = 81.

ответ: да.

б).

Заметим, что при такой сумме будут использованы только двузначные и однозначные числа (так как наименьшее возможное в задаче трехзначное число, 222, уже больше 197). То есть, имеем всего лишь шесть возможных чисел: 2, 7, 22, 27, 72, 77.

Предположим, что 197 можно представить в виде суммы нескольких различных натуральных чисел, состоящих только из 2 и 7. Так как 197 - число нечетное, то и в искомой сумме будет нечетное количество нечетных чисел - или же нечетное количество чисел, заканчивающихся на 7 (то есть, 1 или 3 числа).

Итак, рассмотрим два случая. Пусть в сумме есть только одно нечетное число. Тогда максимальное значение такой суммы равняется (2 + 22 + 72) + 77 = 173, что, естественно, меньше 197. Такой расклад событий нам не подходит.

Второй случай подразумевает, что были использованы все три нечетных числа. Если мы к тому же взяли в сумму и все четные числа, то она стала равна (7 + 27 + 77) + (2 + 22 + 72) = 207. Это больше, чем нам нужно, ровно на 10. Но проблема в том, что мы должны вычесть из суммы 10, используя только 2, 22, 72. Но 2 < 10 < 22, и уменьшить сумму таким тоже не получится. Значит, и этот вариант не имеет места быть.

И искомое предположение было неверным.

ответ: нет.

в).

В полном условии задачи пункта в указано число 2099 (так как число 209 получить искомым нельзя).

Докажем, что меньше, чем за семь слагаемых, получить 2099 невозможно.

Здесь, опять же, в силу нечетности числа 2099, в сумме будут присутствовать нечетное количество чисел, заканчивающихся на 7.

Если такое число одно, то сумма последних цифр (чтобы на конце было 9 и всего слагаемых было не более 7) может быть такова:

7 + 2   ⇒  __9    (2 числа)

7 + 2 ⋅ 6   ⇒  __9    (7 чисел)

Если у нас три семерки, то случай (в пределах семи слагаемых) только один:

7 ⋅ 3 + 2 ⋅ 4   ⇒  __9    (7 чисел)

Тоже самое касается пяти и семи семерок:

7 ⋅ 5 + 2 ⋅ 2   ⇒  __9    (7 чисел)

7 ⋅ 7   ⇒  __9    (7 чисел)

Если чисел, заканчивающихся на 7, больше чем 7, то и всего слагаемых больше семи, что нас пока не устраивает.

Таким образом, единственный случай с меньше, чем с семью слагаемыми, - это 2 + 7.

Но если у нас есть всего лишь два слагаемых, то максимальная сумма равна 772 + 777 = 1549 < 2099 (четырехзначные числа не используются, так как 2222 > 2099). Получаем, что меньше семи слагаемых использовать невозможно (есть только один кандидат из двух слагаемых, правда, нам не подходящий).

Докажем, что семь слагаемых будет достаточно - приведем пример:

2 + 22 + 222 + 722 + 77 + 277 + 777 = 2099

ответ: 7 чисел.

4,6(39 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ