Чтобы упростить выражение (3х + 2)(2х - 1) - (5х - 2)(х - 4) откроем скобки и приведем подобные слагаемые.
Чтобы умножить скобку на скобку умножаем каждое слагаемое из одной скобки на каждое слагаемое из второй.
(3х + 2)(2х - 1) - (5х - 2)(х - 4) = 3x * 2x - 3x * 1 + 2 * 2x - 2 * 1 - (5x * x - 5x * 4 - 2 * x - 2 * (- 4)) = 6x^2 - 3x + 4x - 2 - (5x^2 - 20x - 2x + 8);
Открываем скобки используя правило открытия скобок перед которыми стоит знак минус.
6x^2 - 3x + 4x - 2 - (5x^2 - 20x - 2x + 8) = 6x^2 - 3x + 4x - 2 - 5x^2 + 20x + 2x - 8 = 6x^2 - 5x^2 - 3x + 4x + 20x + 2x - 2 - 8 = x^2 + 23x - 10.
Тригонометрическим уравнением называется уравнение, содержащее переменную под знаком тригонометрических функций.
Уравнения вида sin x = a; cos x = a; tg x = a; ctg x = a, где x - переменная, a∈R, называются простейшими тригонометрическими уравнениями.
Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.
Пример.
а) sin(3x)= √3/2
Обозначим 3x=t, тогда наше уравнение перепишем в виде:
sin(t)=1/2.
Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.
Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.
Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,
тогда x= ((-1)^n)×π/9+ πn/3
ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.
D=-16²-4*1(-17)=256-(-68)=324=18
t¹=16-18/2*1=-2/2=-1
t²=16+18/2*1=34/2=17
ответ:t1=-1,t2=17