Начнем со второй системы. Она решается устно. Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2. 24*2 = 24*х, откуда х = 2. Тогда у1 = 2, у2 = -2. ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения. получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5. ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим: 5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11. ответ: (6; 21), (- 2/5; - 11)
ответ:Объяснение:Предположим, что клетки квадрата n × n удалось раскрасить таким образом, что для любой клетки с какой-то стороны от неё нет клетки одного с ней цвета. Рассмотрим тогда все клетки одного цвета и в каждой из них нарисуем стрелочку в том из четырёх направлений, в котором клетки того же цвета нет. Тогда на каждую клетку «каёмки» нашего квадрата будет указывать не более одной стрелки. Так как клеток каёмки всего 4n – 4, то и клеток каждого цвета не более 4n – 4. С другой стороны, каждая из n² клеток нашего квадрата раскрашена в один из четырёх цветов, то есть n² ≤ 4(4n – 4). Для решения задачи теперь достаточно заметить, что последнее неравенство неверно при n = 50. Несложно убедиться, что оно неверно при всех n ≥ 15, и, следовательно, утверждение задачи верно уже в квадрате 15 × 15 — а заодно и в любом большем квадрате.
9 = √х, х = 81
ответ: координаты точки (81; 9)