Пусть — общее число человек на экзамене по математике. 15% не решили ни одной задачи, запишем это как , 144 человека решили с ошибками, а число верно решивших все задачи относится к числу не решивших вовсе, как 5:3. Как же это записать? Временно обозначим число верно решивших задания как . Итак, число верно решивших относится к числу не решивших вовсе, как 5:3. Получается: , отсюда . Итак, у нас есть три группы экзаменуемых: не решили , решили с ошибками 144, решили правильно . Вместе эти три группы есть общее число человек на экзамене, то есть . Получаем: Решаем уравнение: ответ: 240
Для решения нужно знать некоторые теоремы: 1) любая высота в равностороннем треугольнике является биссектрисой и медианой этого треугольника, а также серединным перпендикуляром к соответствующей стороне этого треугольника. 2) теорема Пифагора. 3) медианы любого треугольника точкой пересечения делятся в отношении 2:1 считая от вершины. Пусть сторона данного треугольника a=(V3). Проведем какую-либо высоту в данном треугольнике, эта высота является медианой, поэтому делит сторону, к которой проведена пополам. Рассмотрим один из двух прямоугольных треугольников, на которые делится исходных равносторонний треугольник проведенной высотой. Гипотенуза прямоугольного треугольника = a, один из катетов = (a/2). Найдем второй катет, который является высотой исходного треугольника. По т. Пифагора: a^2 = (a/2)^2 + h^2; h^2 = a^2 - (a/2)^2 = a^2 - (a^2/4) = (3/4)*(a^2). h = a*(V3)/2, Центр описанной окружности - это точка пересечения серединных перпендикуляров к сторонам данного треугольника. Но в равностороннем треугольнике все серединные перпендикуляры являются медианами (а также биссектрисами и высотами) этого треугольника. Поэтому длина h это длина медианы, а искомый радиус (в соответствии с теоремой 3) ) будет равен (2/3) от h. Т.е. R = (2/3)*h = (2/3)*a*(V3)/2 = (2/3)*(V3)*(V3)/2 = 1.
√7*4-3=√28-3=√25=5
√36*0,81=√36*√0,81=6*0,9=5,4