Y=-3x²+2x-4 при х=0 y=-4 корней нет поскольку дискриминант = b²-4ac=-44< 0 - парабола лежит под осью х. y'=-6x+2 -6x+2=0 6x=2 x=1/3 x∈(-∞; 1/3) y'> 0 возрастает x∈(1/3; ∞) убывает в точке х=1/3 максимум у=-3*1/9+2/3-4=-3 1/3 область определения r, ни четная ни нечетная. y''=-6 точек перегиба нет, выпукла вверх.
Решение данного уравнения основано на том, чтобы узнать, насколько хорошо усвоена теорема Виета. При этом надо учесть, что эта теорема относится только к тем уравнениям, где коэффициент перед Х²=1. Поэтому приводим уравнение к виду, показанном во втором действии. Напомним теорему Виета. Х1+Х2= -b; Х1×Х2=с где b-это коэффициент перед Х, а с- известное нам число. Но в решении я указала эти значения со штрихом, чтобы не спутать с заданными в уравнении. Ну а дальше думаю по решению будет ясно, просто для начала находим а, а потом подставив находим и б. Возникнут вопросы или что-то неясное - обращайтесь. Удачи!
27x^3 - y^3 = ( 3x )^3 - y^3 = ( 3x - y )( 9x^2 + 3xy + y^2 )
243x^5 - 1 = (3x )^5 - 1^5 = ( 3x - 1 )( 81x^4 + 27x^3 + 9x^2 + 3x + 1 )