а) xp < yp
б) xp > yp
в) 1/x > 1/y
г) 1/x < 1/y
Объяснение:
а) Представь, что у тебя x = 1, а y = 2. P = любому положительному числу. Для наглядности возьмём 1.
Если ты умножишь x на p, то получишь 1 * 1 = 1. Если y умножишь на p, то получишь 2 * 1 = 2. Следовательно, у тебя произведение x и p будет меньше, чем y и p. Т.к изначально известно, что x < y.
б) Продолжаю объяснение из а. X и Y оставляем такими же: x = 1, y = 2. Однако если p - любое отрицательное число, то произведение x и p будет больше, чем y и p. Допустим, в этом примере p у нас будет = -1
Тогда получим x * p = 1 * (-1) = -1, а y * p = 2 * (-1) = -2. Тут не так определяется величина числа, как с положительными числами. В случае с отрицательными числами, больше будет то число, которое ближе к нулю. В данном примере ближе к нулю будет -1.
в) Чем меньше число на которое ты делишь, тем больше получается значение. К примеру, пусть x = 2, а y = 4. Тогда получим :
1/x = 1/2 = 0,5
1/y = 1/4 = 0,25
г) Пусть x = -2, а y = -4. тогда:
1 / (-2) = -0,5
1 / (-4) = -0,25
-0,25 > -0,5 т.к ближе к нулю.
Объяснение:
Первая труба наполняет бассейн за х часов,тогда за час - 1/х.
Вторая труба наполняет бассейн за (х+10) часов,тогда за час - 1/(х+10).
Вместе за час работы они наполнят бассейн (1/х)+ (1/(х+10)).
(1/х)+ (1/(х+10))= (х+10+х)/(х*(х+10))=(2х+10) / (х²+10х)
При совместной работе они наполняют бассейн за 12 часов:
1 ÷ (2х+10) / (х²+10х) = 12
1 * (х²+10х) / (2х+10) = 12
(х²+10х) / (2х+10) = 12
12*(2х+10) = х²+10х
24х+120-х²-10х=0
-х²+14х+120=0
х²-14х-120=0
х₁+х₂=14
х₁х₂= -120
х₁= -6 не подходит по условию
х₂=20 часов - первая труба наполняет бассейн.
20+10=30 часов - вторая труба наполняет бассейн.