М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
sasharuf2000
sasharuf2000
29.07.2020 17:02 •  Алгебра

(ab+c)/(p^2-q^2) при каких значения букв определено выражение

👇
Ответ:
yan4enkomaks
yan4enkomaks
29.07.2020
\frac{ab+c}{p^2-q^2} \\ \\ p^2-q^2 \neq 0 \\ (p-q)(p+q) \neq 0 \\ \\ p \neq q \\ p \neq -q
4,6(66 оценок)
Открыть все ответы
Ответ:
ctalin123123
ctalin123123
29.07.2020
Среднеарифметическое двух чисел всегда меньше большого числа на столько же, насколько оно больше меньшего числа. Ну например для чисел 17 и 25 – среднеарифметическое равно     21 = \frac{ 17 + 25 }{2} \ ,     и при этом 21 на 4 меньше двадцати пяти и на 4 больше семнадцати.

Когда Вася отдаёт Пете 6 монет и у них становится поровну, то они как раз и приходят к среднеарифметическому их начальных количеств монет. В итоге у Васи оказывается на 6 монет меньше изначального, а у Пети на 6 монет больше изначального. А значит, вначале у Васи было на 12 = 6 + 6 монет больше, чем у Пети.

Путь у Васи вначале x монет. Тогда у Пети x - 12 монет.

В первом случае всё как раз получается правильно:

x - 6 = ( x - 12 ) + 6 \ ;

Во втором случае у Васи-II оказывается x + 9 монет, а у Пети-II будет x - 12 - 9 монет. При этом у Пети-II монет в K раз меньше, т.е. если мы количество монет Пети-II мысленно увеличим в K раз, то их станет столько же, сколько и у Васи-II. На этом основании составим уравнение:

x + 9 = ( x - 12 - 9 ) K \ ;

x + 9 = ( x - 21 ) K \ ;

Далее это целочисленное уравнение можно решить двумя

[[[ 1-ый

K = \frac{ x + 9 }{ x - 21 } = \frac{ x - 21 + 21 + 9 }{ x - 21 } = \frac{ x - 21 + 30 }{ x - 21 } = \frac{ x - 21 }{ x - 21 } + \frac{30}{ x - 21 } = 1 + \frac{30}{ x - 21 } \ ;

K = 1 + \frac{30}{ x - 21 } \ ;

Чтобы K было целым, целой должен быть и результат деления в дроби, а чтобы K было максимальным, частное от деления в дроби должно быть максимальным, а значит её знаменатель должен быть минимальным, целым, положительным числом, что возможно только, когда     x - 21 = 1 \ ,     откуда:

x = 22 \ ; K = 31 \ ;

[[[ 2-ой

x + 9 = K x - 21 K \ ;

9 + 21 K = ( K - 1 ) x \ ;

x = \frac{ 9 + 21 K }{ K - 1 } = \frac{ 9 + 21 ( K - 1 + 1 ) }{ K - 1 } \ = \frac{ 9 + 21 ( K - 1 ) + 21 }{ K - 1 } = \frac{ 30 + 21 ( K - 1 ) }{ K - 1 } = \\\\ = \frac{30}{ K - 1 } + \frac{ 21 ( K - 1 ) }{ K - 1 } = \frac{30}{ K - 1 } + 21 \ ;

x = \frac{30}{ K - 1 } + 21 \ ;

Чтобы x было целым, целой должен быть и результат деления в дроби. А максимальное значение знаменателя в такой дроби (при том, что частное от деления остаётся целым) составляет K - 1 = 30 \ , откуда:

K = 31 \ ; x = 22 \ ;

О т в е т : K = 31 \ .
4,6(60 оценок)
Ответ:
Solncelunatik
Solncelunatik
29.07.2020
1)  скорее всего в задании опечатка:
sin52'cos22'-cos52'sin22'=sin(52-22)=sin30=0.5

2)Преобразуйте sin4a-sin2a в произведение,
по формуле разности синусов:
2cos\frac{4 \alpha +2 \alpha }{2}sin\frac{4 \alpha -2 \alpha }{2}=2cos3α*sinα

3)Установите соответствие между тригонометрическими функциями (А-В) и их числовыми значениями(1-4), если sina=3/5 и п/2п
A.cosa 1) (-1)*1/3
Б.ctga 2)(-24/25)
В.sin2a 3)(-4/5)
4) 4/5

решение:
 п/2<α<п - угол принадлежит 2 четверти⇒ cos x отрицательный
cosx= -√(1-sin²x)= -√1-9/25= -√16/25= -4/5
ctgx=\frac{cosx}{sinx}= - \frac{4*5}{5*3}=-4/3
sin2x=2sinx cosx= - 2\frac{3}{5} \frac{4}{5}=-24/25

4)Вычислите cos210' и cos15'
cos210=cos(180+30)=-cos30= - \sqrt{3} /2
cos15=cos(45-30)=cos45*cos30+sin45*sin30=\frac{ \sqrt{2} }{2}* \frac{ \sqrt{3} }{2}+ \frac{ \sqrt{2} }{2}* \frac{1}{2}= \frac{ \sqrt{6}+ \sqrt{2} }{2}
4,7(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ