Берем производную: y' = 10x 10x = 0 x = 0 Смотрим как ведет себя производная в районе этой точки При x < 0 y' < 0 => исходная функция убывает на интервале (-бесконечность;0) При x > 0 y' > 0 => исходная функция возрастает на интервале (0;+бесконечность) Это значит, что наименьшее значение на отрезке [-1;2] функция достигает при x = 0, то есть y(0)=15 - наименьшее значение Свое наибольшее значение функция достигает на одном из концов отрезка: y(-1) = 20 y(2)=35 - наибольшее значение функции на отрезке [-1;2\
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
№1 Применяем ограниченность синуса и косинуса -1≤cosx≤1 Преобразуем правую часть по формуле
ответ Множество значений
Применяем ограниченность синуса и косинуса -1≤sinx≤1 Преобразуем правую часть по формуле
ответ Множество значений
№2 Найти область определения функции у=1/(sinx-sin3x) Дробь имеет смысл тогда и только тогда, когда её знаменатель отличен от 0 Найдем при каких х знаменатель равен 0. Решаем уравнение sinx-sin3x=0 Применяем формулу
Так как синус - нечетная функция, то sin(-x)=-sinx
sinx=0 ⇒ x=πk, k∈Z cos2x=0 ⇒ 2x=(π/2)+πn, n∈Z ⇒ x=(π/4)+(π/2)n, n∈ Z ответ. Область определения: x≠πk, k∈Z x≠(π/4)+(π/2)n, n∈ Z
y' = 10x
10x = 0
x = 0
Смотрим как ведет себя производная в районе этой точки
При x < 0 y' < 0 => исходная функция убывает на интервале (-бесконечность;0)
При x > 0 y' > 0 => исходная функция возрастает на интервале (0;+бесконечность)
Это значит, что наименьшее значение на отрезке [-1;2] функция достигает при x = 0, то есть y(0)=15 - наименьшее значение
Свое наибольшее значение функция достигает на одном из концов отрезка:
y(-1) = 20
y(2)=35 - наибольшее значение функции на отрезке [-1;2\