5x^2+bx+24=0
D = b^2 - 4*24*5 = b^2 - 480>=0
x1 = (-b + корень(b^2 - 480)) / 10
x2 = (-b - корень(b^2 - 480)) / 10
Пусть x1 = 8
тогда (-b + корень(b^2 - 480)) / 10 = 8
-b + корень(b^2 - 480) = 80
корень(b^2 - 480) = 80 + b >=0
b^2 - 480 = b^2 + 160b + 6400
160b = - 6880
b = - 43
при этом b D = 1369 = 37^2>0
тогда x2 = (43 -37)/10 = 0.6
Пусть x2 = 8
тогда (-b - корень(b^2 - 480)) / 10 = 8
-b - корень(b^2 - 480) = 80
корень(b^2 - 480) = - 80 - b >=0
b^2 - 480 = b^2 + 160b + 6400
160b = - 6880
b = - 43 не выполняется условие - 80 - b >=0
ответ: b = -43, x2 = 0.6
В решении.
Объяснение:
На сторонах прямоугольника построены квадраты. Площадь одного квадрата на 56 см² больше площади другого. Найдите площадь прямоугольника, если известно, что длина прямоугольника на 4 см больше его ширины.
х - ширина прямоугольника.
у - длина прямоугольника.
х² - площадь малого квадрата.
у² - площадь большего квадрата.
1) По условию задачи система уравнений:
у = х + 4
у² - х² = 56
В первом уравнении у выражен через х, подставить это выражение во второе уравнение и вычислить х:
(х + 4)² - х² = 56
х² + 8х + 16 - х² = 56
8х = 56 - 16
8х = 40
х = 40/8
х = 5 (см) - ширина прямоугольника.
5 + 4 = 9 (см) - длина прямоугольника.
Проверка:
9² - 5² = 81 - 25 = 56 (см²), верно.
2) Найти площадь прямоугольника:
S = 9 * 5 = 45 (см²).
24/5=4,8
5,3*x2=4,8
x2=4,8/5,3
x1+x2=-b/5
(5,3+4,8/5,3)5=-b
-164,45/5,3=b