Объяснение:
5/8 и 4/9 . Общий знаменатель 8*9=72. Дополнительные множители 9 и 8 соответственно.
45/72 и 32/72.
***
11/24 и 101/180 . Разложим на множители 24= 2*2*2*3; 180=2*2*3*3*5
Общий знаменатель 180*2=360 (недостающий множитель из разложения числа 24). Дополнительные множители 15 и 2 соответственно. получаем
11*15/24*15 и 101*2/180*2.
165/360 и 202/360.
***
5/12 и 23/27. 12=2*2*3. 27=3*3*3. Общий знаменатель 27*4=108. дополнительные множители 108/12=9 и 108/27=4.
Получим: 5*9/12*9 , 23*4/27*4
45/108 и 92/108.
Объяснение:
№ 3
b₁=64 b₂=32 q=b₂/b₁=32/64=1/2
n=6
S₆=b₁((qⁿ-1)/(q-1))
S₆=64·(((1/2)⁶-1)/(1/2-1))=64((1/64-1)/(-1/2))=64·((-63/64)/(-1/2))=64·(63/32)=
2·63=126 ( B)
№4
a₁=-10 a₅=-4 n=5
a₅=a₁+(n-1)d
-4=-10+(5-1)d
-4=-10+4d
4d=6
d=6/4=1.5
n=8
a₈=a₁+(n-1)d=-10+(8-1)·1.5=-10+7·1.5=-10+10.5=0.5
S₈=(a₁+a₈)n/2=(-10+0.5)8/2=-9.5·8/2=-38 (A)
№5
по теотеме Синусов a/Sina = b/Sin B
3/Sin 60° = x/Sin 45°
3/ (√3/2) = x/ (√2/2)
x=((√2/2)·3) / (√3/2)
x=(3√2/2)×(2/√3)=(3√2)/√3=(3√6)/3=√6 (B)
№6
a₁=6 a₂=2
d=2-6=-4
a₃=a₂+d=2-4=-2 (B)
№ 8
R=4√3 ( формула)
a=R√3 =4√3×√3=4×3=12 см ( А)
№10
АВС подобен А₁В₁С₁ , отсюда А₁В₁/АВ=В₁С₁/ВС=А₁С₁/АС
15/3=А₁В₁/4
А₁В₁=15×4/3=60/3=20 (В)