Объяснение:
Подайте в виде произведения выражение.
здесь имеем дело с суммой a³+b³=(a+b)(a²-ab+b²)
и разностью кубов a³-b³ = (a-b)(a²+ab+b²).
***
1) a⁶ - 8= (a²)³ -(2)³ = (a²-2)(a⁴+2a² + 4);
***
2) m¹² +27 = (m⁴)³ + (3)³ = (m⁴+3)(m⁸-3m⁴+9);
***
3) a³-b¹⁵c¹⁸ = (a)³ - (b⁵c⁶)³ = (a-b⁵c⁶)(a²+ab⁵c⁶+b¹⁰c¹²);
***
4) 1-a²¹b⁹ = (1)³ - (a⁷b³)³ = (1-a⁷b³)(1 + a⁷b³ + a¹⁴b⁶);
***
5) 125c³d³+0.008b³ = (5cd)³ + (0.2b)³ = (5cd+0.2b)(25c²d²-bcd+0.04b²);
***
6) 64/729x³ - 27/1000y⁶ = (4/9x)³ - (3/10y²)³ =
= (4/9x- 3/10y²)(16/81x²+2/15xy²+9/100y⁴).
Объяснение:
1)одинаковыми значками отмечены равные стороны. Значит
СО=ОД=4
Ао=ОВ=3
∠СОА=∠ВОД - вертикальные.
ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны СА=ВД=5
5+4+3=12
ответ Р=12 см.
2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.
ответ Р=17 см
3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны
КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.
4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)
а можно так:100x^2-4(49x^2-28x+4y^2)=100x^2-(196-112x+16y^2)=
=100x^2-(14x-4y)^2=(100x-14x+4y)(100x+14x-4y)=(86x+4y)(114x-4y)