х = 4; у = 2
Объяснение:
Задание
Дана система уравнений:
5y-x = 6 (1)
3x-4y =4 (2)
Найти х и у методом алгебраического сложения.
Решение
Объяснение. Для решения системы уравнений методом алгебраического сложения необходимо уравнять коэффициенты при х или у (судя по тому, что проще), а затем сложить левые и правые уравнений, если коэффициенты с противоположными знаками, либо из одного уравнения вычесть другой, если знаки перед этим неизвестным одинаковые.
1) Домножим уравнение (1) на 3:
5у · 3 - х · 3 = 6 · 3
15у - 3х = 18 (3)
2) Складываем левые и правые части уравнений (2) и (3):
(3x - 4y) + (15у - 3х) = 4 + 18
3х - 4у + 15у - 3х = 22
11 у = 22
у = 22 : 11 = 2
3) Подставим в уравнение (1) у = 2:
5 · 2 - x = 6
10 - х = 6
- х = 6 - 10
- х = - 4
х = 4
ПРОВЕРКА
При х = 4 и у = 2 левая часть уравнения (1) равна:
5 · 2 - 4 = 10 - 4 = 6
Так как левая часть равна правой части, то это говорит о том, что корни найдены верно.
Аналогично проверяем второе уравнение:
3 · 4 - 4 · 2 = 12 - 8 = 4
4 = 4
ответ: х = 4; у = 2.
Обозначим длины сторон прямоугольника через х и у.
Согласно условию задачи, площадь данного прямоугольника равна 72 см², следовательно, имеет место следующее соотношение:
х * у = 72.
Также известно, что периметр данного прямоугольника равен 36 см, , следовательно, имеет место следующее соотношение:
2 * (х + у) = 36.
Упрощая данное соотношение, получаем:
х + у = 36 / 2;
х + у = 18;
х = 18 - у.
Подставляя полученное значение для х в соотношение х * у = 72, получаем:
(18 - у) * у = 72.
Решаем полученное уравнение:
18у - у² = 72;
у² - 18у + 72 = 0;
у = 9 ± √(81 - 72) = 9 ± √9 = 9 ± 3.
у1 = 9 - 3 = 6;
у2 = 9 + 3 = 12.
Зная у, находим х:
х1 = 18 - у1 = 18 - 6 = 12;
х2 = 18 - у2 = 18 - 12 = 6.
ответ: стороны данного прямоугольника равны 6 см и 12 см.
-5х+10=0
-5х=-10
х=2