Поскольку функция содержит квадрат переменной х, то она квадратная. Следовательно, ее графиком будет парабола.
О параболе известно, что у нее есть вершина, что ветви ее могут быть направлены вверх или вниз, и что она может быть симметрична оси Оу.
Начнем с симметричности относительно оси Оу.
Если функция симметрична, то она называется четной. Свойство четности можно проверить, подставив вместо переменной х противоположное ей значение, то есть —х. Если в результате получим уравнение функции без изменений, то функция является четной, а значит симметричной относительно оси Оу.
Итак, проверим функцию на четность:
 — функция четная.
Далее определим куда направлены ветви параболы. Для этого достаточно посмотреть на знак перед квадратом переменной х. в нашем случае перед ним стоит условно знак «плюс», а это значит, что ветви параболы будут направлены вверх.
Для определения координаты точки вершины параболы будем использовать готовую формулу, которая дает возможность найти значение первой координаты точки вершины параболы:

Чтобы получить значение второй координаты вершины подставим найденное значение х в уравнение функции:

Таким образом, вершиной параболы является точка (0; —4).
Теперь нужно вычислить еще какое-то количество точек, которые будут принадлежать параболе, для ее построения.
Возьмем четыре произвольных значения переменной х и посчитаем для них значение функции у:
х = 1:  —точка (1; —3).
х = 2:  —точка (2; 0).
х = —1:  —точка (—1; —3).
х = —2:  —точка (—2; 0).
Проведем через вершину и полученные точки кривую и получим график функции y = x^2 — 4.

Знайти множину значень функції:
у = 3cos(x+p/3)-2О
Розв'язання:
Розглянемо функцію z=cos(x+Pi/3).
Її найменше значення zmin=-1, а найбільше zmax=1 за властивістю функції косинуса z=cos(a•x+b). .
Графіки функцій, що аналізуємо наведено на рисунку(файл нижче,перша картинка)
Підставивши найменше і найбільше значення функції косинус у заданий вираз, отримаємо найменше і найбільше значення заданої функції, відповідно(файл нижче,друга картинка)
Запишемо множину значень косинуса:
E(y)=[-5;1].
Отже,наша відповідь-E(y)=[-5;1].
2)-