ОКАНЧИВАЕТСЯ НА 4.
1)ЧИСЛО 2 В СТЕПЕНИ 99 ОКАНЧИВАЕТСЯ НА ЦИФРУ 8.
если составить небольшую табличку,
2 в степени 1 оканчивается на 2
2 2 4
2 3 8
2 4 6
если продолжать дальше,то последовательность чисел будет постоянно повторяться,то есть любая степень числа 2 может оканчиваться на 2,4,8 или на 6 (ну,еще есть 2 в степени ноль,но это только единичный случай)
с этой таблички вычисляем,что 2 в степени 99 оканчивается на цифру 8.
2) теперь смотрим таблицу умножения на 7.
число,оканчивающееся на цифру 8 - только 28 (4*7=28),соответственно,при делении на 7 числа,оканчивающегося на цифру 8 может получиться только число,оканчивающееся на цифру 4.
![lim_{x\to \infty }\frac{x+1}{x-2}=lim_{x\to \infty }\frac{\frac{x}{x}+\frac{1}{x}}{\frac{x}{x}-\frac{2}{x}}=lim\frac{1+\frac{1}{x}}{1-\frac{2}{x}}=[\frac{1+0}{1-0}]=\frac{1}{1}=1](/tpl/images/0237/6916/b2fde.png)

У пяти кубиков всего 5 * 6 = 30 граней.
Каждое соединение двух кубиков уменьшает их количество на 2 грани.
Всего из пяти кубиков можно построить 15 фигур - на рисунке в приложении.
У большинства из них - четыре общих грани и 30 - 8 = 22 открытых грани.
Только у рис. 5 и 15 - по 5 общих грани и 20 граней открыты.
ответ: Два варианта числа открытых граней.