2 вариант
1. Вычислите с формул сложения:
а) cos225° =cos(180°+45°) =cos180°*cos45° -sin180°*sin45°= -1*cos45° - 0*sin45° = - cos45° = -(√2) /2
б) sin3π/4 = sin(π - π/4) = sin(π)*cos(π/4) - cos(π)*sin(π/4) = 0*cos(π/4) - (-1)*sin(π/4) = sin(π/4) = (√2)/2
в) cos(5π/9)*cos(13π/9) - sin(5π/9)*sin(13π/9)=cos(5π/9+13π/9) =cos2π =1
г) ( tg(43°) +tg(17°) ) / ( 1 - tg(43°) *tg(17°) ) = tg(43°+17°) =tg60° =(√3 )/2
- - - - - - -
2. Упростите выражение:
а) cosα*cos2α +sin(-α)*sin2α
=cosα*cos2α - sinα*sin2α =cos(α+2α) =cos3α .
б) sin2α*cosα -cos2α*sinα =sin(2α-α) =sinα
- - - - - - -
3. Сократите дробь:
а) sin20°/cos10° =2sin10°cos10°/cos10° =2sin10°
б) sin6α/sin²3∝ =sin(2*3α)/sin²3∝=2sin3∝*cos3∝/sin²3∝ =
2cos3∝/sin3∝ = 2ctg3∝
- - - - - - -
4. Вычислите:
а) cos²(π/6) -sin²(π/6) = cos(2*π/6) =cos(π/3) = 1/2 ;
б) 2sin210°*cos210° = sin(2*210°) = sin420°=sin(360°+60°) = sin60° =(√3) /2.
- - - - - - -
5. Дано: cosα = 0,6 , π/2 < ∝< π . Найти sin2α.
sin2α =2sin∝*cos∝ = [ π/2 < ∝< π ⇒ sin∝ > 0 ] =
2√(1 -cos²∝) *cos∝ =2√( 1 -(-0,6)² ) *(-0,6) = - 1,2√(1 -0,36) = -1,2√(0,64) = - 1,2*(0,8) = - 0,96 .
1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
Отсюда а8=а1+7d или а8=1+7*3
а8=22
Sn=((a1+an)/2)*n следует S8=92.
Вроде так.