(1) 1/5 в степени х+4 = (1/5) в -2 степени х+4= -2, х= -8 2) 1/2 в степени х-4 = (1/2) в -6 степени х-4=-6, х= -2 3) 1/3 = (1/3) в степени -10х+3 1=-10х+3, х= 1/5 4) 4 в степени 5х-10 = 4 в степени 5 5х-10=1, х= 2,2 5) 0,1 в степени х-5 = 0,1 в степени -2 х-5=-2, х= 3 6) 1/5 в степени 2х-2 = (1/5) в степени -4 2х-2=-4, х= -1 7) 1/4 в степени х-4 = (1/4) в степени -3х х-4=-3х, х=1 8) 1/11 в степени х-5 = (1/11) в степени -2 х-5=-2, х=3 9) 7 в степени 2х-2 = 7 в степени -1 2х-2=-1, х= 0,5 10) 1/4 в степени 2х-2 = 1/4 в степени -4 2х-2=-4, х=-1
1)=(по основанию 5) log(4+x)(1+2x)= log 9 4+x>0 x>-4 и 1+2x>0 x>-1/2, т е х>-1/2 4+8x+x+2x²=9 2x²+9x-5=0 x1,2=((-9+-√(81+40))/4= (-9+-11)/4, x1=-5-не удовлетворяет x>-1/2 x2=1/2-ответ 2) 1+x>0 x>-1и 2+x>0 x>-2, т е х>-1 = (по основанию 2)log(1+x)(2+x)=1 x²+x+2x+2=2, x²+3x=0 x1=0, x2=-3-не удовлетворяет x>-1 x=0- ответ 3) x-2>0 x>2 и x+1>0 x>-1, т е x>2 = (по основанию 2)log(x-2)(x+1)=2, x²+x-2x-2=4, x²-x-6=0, x1,2=(1+-√(1+24))/2=(1+-5)/2, x=3- ответ