М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Gagarinaa
Gagarinaa
09.06.2021 18:05 •  Алгебра

Люди решить 1.известно, что а a) a-5 и b-5; b) a-2 и b-1; c) -0,6a и -0,6b. 2.доказать неравенство: a)9b2+1≥ 6b; b)(b-1)(b-3)< (b-2)2. 3.зная, что 1,5. оценить: a) ac; b) 4a-c; c) a/c. 4.доказать неравенство: d3 +1≥ d2+d при d≥-1. буду любезна!

👇
Ответ:
inglis1982
inglis1982
09.06.2021
1) непонятно задание,
2) 9b^2+1≥ 6b,
   пусть b=0, тогда 9*0^2+1≥ 6*0,  1>0 - верно,
   пусть b=1, тогда 9*1^2+1≥ 6*1,  10>6 - верно,
   пусть b=-1, тогда 9*(-1)^2+1≥ 6*(-1),  10>-6 - верно, следовательно неравенство верно при любом значении b.
3) непонятно задание,
4) d3 +1≥ d2+d при d≥-1,
    пусть d=-1, тогда (-1)^3 +1≥ (-1)^2+(-1),  2>1 -верно,
    пусть d=0, тогда  0^3 +1≥ 0^2+0,  1>0 -верно,
    пусть d=1, тогда  1^3 +1≥ 1^2+1,  2=2 -верно, следовательно неравенство верно при любом значении d
4,6(91 оценок)
Открыть все ответы
Ответ:
maryvysotinap08vi8
maryvysotinap08vi8
09.06.2021

Бином Ньютона: (a+b)^n=\displaystyle \sum^{n}_{k=0}C^k_na^{n-k}b^k(a+b)n=k=0∑nCnkan−kbk

Применяя формулу бинома Ньютона, мы получим

\begin{gathered}(3x+2a)^6=\displaystyle \sum^6_{k=0}C^k_6(3x)^{6-k}\cdot (2a)^{k}=C^0_6\cdot (3x)^{6-0}\cdot (2a)^0+\\ \\ +C^1_6\cdot (3x)^{6-1}\cdot (2a)^1+C^2_6\cdot (3x)^{6-2}\cdot (2a)^2+C^3_6\cdot (3x)^{6-3}\cdot (2a)^3+\\ \\ +C^4_6\cdot (3x)^{6-4}\cdot (2a)^4+C^5_6\cdot (3x)^{6-5}\cdot (2a)^5+C^6_6\cdot (3x)^{6-6}\cdot (2a)^6=\\ \\ =(3x)^6+6\cdot (3x)^5\cdot 2a+\dfrac{6!}{4!2!}\cdot (3x)^4\cdot (2a)^2+\dfrac{6!}{3!3!}\cdot (3x)^3\cdot (2a)^3+\\ \\ +\dfrac{6!}{4!2!}\cdot (3x)^2\cdot (2a)^4+6\cdot 3x\cdot (2a)^5+(2a)^6=\end{gathered}(3x+2a)6=k=0∑6C6k(3x)6−k⋅(2a)k=C60⋅(3x)6−0⋅(2a)0++C61⋅(3x)6−1⋅(2a)1+C62⋅(3x)6−2⋅(2a)2+C63⋅(3x)6−3⋅(2a)3++C64⋅(3x)6−4⋅(2a)4+C65⋅(3x)6−5⋅(2a)5+C66⋅(3x)6−6⋅(2a)6==(3x)6+6⋅(3x)5⋅2a+4!2!6!⋅(3x)4⋅(2a)2+3!3!6!⋅(3x)3⋅(2a)3++4!2!6!⋅(3x)2⋅(2a)4+6⋅3x⋅(2a)5+(2a)6=

=729x^6+2916x^5a+4860x^4a^2+4320a^3x^3+2160x^2a^4+576xa^5+64a^6=729x6+2916x5a+4860x4a2+4320a3x3+2160x2a4+576xa5+64a6

Где разложения полинома:

\begin{gathered}a_1=729x^6\\ a_2=2916x^5a\\ a_3=4860x^4a^2\\ a_4=4320a^3x^3\\ a_5=2160x^2a^2\\ a_6=576xa^5\\ a_7=64a^6\end{gathered}a1=729x6a2=2916x5aa3=4860x4a2a4=4320a3x3a5=2160x2a2a6=576xa5a7=64a6

4,8(61 оценок)
Ответ:
Ололошка580
Ололошка580
09.06.2021

Бином Ньютона: (a+b)^n=\displaystyle \sum^{n}_{k=0}C^k_na^{n-k}b^k(a+b)n=k=0∑nCnkan−kbk

Применяя формулу бинома Ньютона, мы получим

\begin{gathered}(3x+2a)^6=\displaystyle \sum^6_{k=0}C^k_6(3x)^{6-k}\cdot (2a)^{k}=C^0_6\cdot (3x)^{6-0}\cdot (2a)^0+\\ \\ +C^1_6\cdot (3x)^{6-1}\cdot (2a)^1+C^2_6\cdot (3x)^{6-2}\cdot (2a)^2+C^3_6\cdot (3x)^{6-3}\cdot (2a)^3+\\ \\ +C^4_6\cdot (3x)^{6-4}\cdot (2a)^4+C^5_6\cdot (3x)^{6-5}\cdot (2a)^5+C^6_6\cdot (3x)^{6-6}\cdot (2a)^6=\\ \\ =(3x)^6+6\cdot (3x)^5\cdot 2a+\dfrac{6!}{4!2!}\cdot (3x)^4\cdot (2a)^2+\dfrac{6!}{3!3!}\cdot (3x)^3\cdot (2a)^3+\\ \\ +\dfrac{6!}{4!2!}\cdot (3x)^2\cdot (2a)^4+6\cdot 3x\cdot (2a)^5+(2a)^6=\end{gathered}(3x+2a)6=k=0∑6C6k(3x)6−k⋅(2a)k=C60⋅(3x)6−0⋅(2a)0++C61⋅(3x)6−1⋅(2a)1+C62⋅(3x)6−2⋅(2a)2+C63⋅(3x)6−3⋅(2a)3++C64⋅(3x)6−4⋅(2a)4+C65⋅(3x)6−5⋅(2a)5+C66⋅(3x)6−6⋅(2a)6==(3x)6+6⋅(3x)5⋅2a+4!2!6!⋅(3x)4⋅(2a)2+3!3!6!⋅(3x)3⋅(2a)3++4!2!6!⋅(3x)2⋅(2a)4+6⋅3x⋅(2a)5+(2a)6=

=729x^6+2916x^5a+4860x^4a^2+4320a^3x^3+2160x^2a^4+576xa^5+64a^6=729x6+2916x5a+4860x4a2+4320a3x3+2160x2a4+576xa5+64a6

Где разложения полинома:

\begin{gathered}a_1=729x^6\\ a_2=2916x^5a\\ a_3=4860x^4a^2\\ a_4=4320a^3x^3\\ a_5=2160x^2a^2\\ a_6=576xa^5\\ a_7=64a^6\end{gathered}a1=729x6a2=2916x5aa3=4860x4a2a4=4320a3x3a5=2160x2a2a6=576xa5a7=64a6

4,5(11 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ