пусть дан ΔАВС с основанием АВ = 12 см и высотой ВК,
1.
так как треугольник равнобедренный, то углы при основании будут равны, следовательно угол в 120° - это угол при вершине, то есть:
∠В = 120°,
2.
так как треугольник равнобедренный, то высота ВК будет медианой и биссектрисой, то есть:
АК = 1/2 * АС = 1/2 * 12 = 6 см,
∠АВК = 1/2 * ∠В = 1/2 * 120° = 60°,
3.
так как ВК - высота, то полученнный ΔАВК - прямоугольный, в котором найдем угол А:
∠А = 180° - (∠АВК + ∠К) = 180° - (60° + 90°) = 30°,
4.
катет лежащий против угла 30 градусов равен половине гипотенузы, значит:
ВК = 1/2 * АВ,
5.
пусть ВК = х, тогда:
АВ = 2 * ВК = 2х,
6.
по теореме Пифагора:
АВ² = АК² + ВК²,
(2х)² = 6² + х²,
4х² = 36 + х²,
4х² - х² = 36,
3х² = 36,
х² = 12,
х = √12 = √(4*3),
х = 2√3 см - высота ВК
I.
Пусть
n - первое число;
(n+1) - второе число;
(n+2) - третье
(n+3) - четвертое число,
тогда
(n+1)-n = 1 - это разность двух первых последовательных натуральных чисел;
(n+3) - (n+2) = 1 - это разность последующих двух последовательных натуральных чисел;
Очевидно, что в сумме (1+1) они дадут 2, но никак не 14 как в условии.
II.
Правильное условие такое:
"Сумма разности двух последовательных натуральных чисел и разности квадратов последующих двух последовательных натуральных чисел равна 14. Найдите эти числа."
Тогда решение ниже.
Пусть
n - первое число;
(n+1) - второе число;
(n+2) - третье
(n+3) - четвертое число,
тогда
(n+1)-n = 1 - это разность двух первых последовательных натуральных чисел;
(n+3)² - (n+2)² - это разность квадратов последующих двух последовательных натуральных чисел.
Получаем уравнение:
1+(n+3)² - (n+2)² =14
1+ (n+3-n-2)·(n+3+n+2) = 14
1+1·(2n+5) = 14
1+2n+5=14
2n=14-1-5
2n=8
n=8:2
n=4
4 - первое число;
4+1=5 - второе число;
4+2=6 - третье
4+3=7 - четвертое число,
Проверка
(5-4) + (7²-6²) = 14
1+49-36=14
50-36=14
14=14 верное равенство
ответ: 4; 5; 6; 7.
2)-1250,6250
3)1/80,1/160
4)-5,0;-4,4