Если нужно выбрать верны утверждения, то это 2 и 4.
Смотрим, белый короче желтого, но длиннее синего.
Расположим шарфы в порядке уменьшения их длины, получаем:
Желтый, белый, синий. Читаем далее, черный не длиннее белого, следовательно, он может быть как равен по длине, так и меньше.
Тогда примерное расположение шарфов:
Желтый, белый, синий и черный(черный и синий могут меняться местами в зависимости от их длины)
Смотрим утверждение, 1 не верно, так как черный шарф может быть как равен по длине, так и меньше.
2 утверждение верно, так как читая условие делаем вывод, что желтый длиннее всех(см. выше).
3 утверждение не верно, так как в условии сказано, что белый шарф длиннее.
4 утверждение верно, так как желтый шарф самый длинный.
Объяснение:
Мы знаем, что число n в степени а/b= Корень с показателем а из числа n в степени b
Давайте переведём корень из пяти в 5 в степени 1/6
Теперь действуем по правилу деления степеней- из показателя делимого вычитаем показатели делителя
То есть 1/3-1/6=2/6-1/6=1/6, значит мы поделили 5 в 1/3 на 5 в 1/6 и от первого числа осталось 5 в 1/6
Получается в скобках у нас останется только 5 в 1/2 * 5 в 1/6
По правилу умножения степеней, чтобы умножить числа с одинаковым основанием нужно сложить из показатели: складываемся 1/2 с 1/6=>3/6+1/6=4/6=2/3
Получаем 5 в 2/3
Чтобы возвести степень в степень умножаем показатели, получается нужно 2/3 умножить на три, проучится 2, то есть все это равно 5^2, что равно 25
Пусть х1, х2 - корни данного уравнения.
По теореме Виетта х1+х2=-(-6);
х1+х2=6.
Из условия х1-х2=3. Тогда х2=(х1+х2-(х1-х2))/2=9/2=4.5
х1=6-х2=6-4.5=1.5.
По теореме Виетта с=х1*х2=1.5*4.5=6.75