Понятно, что а и b должны быть делителями числа 1000=2³·5³. Также понятно, что если НОК(а,b)=1000, то по крайней мере одно из чисел а или b обязательно должно делиться на 2³=8 и по крайней мере одно из них обязательно должно делиться на 5³=125. Из условия, что а,b<1000 следует, что ровно одно из них делится на 8 и ровно одно делится на 125. Значит для a возможны варианты а=8, а=8·5=40, а=8·5²=200. В этом случае им будет соответствовать, например b=125. А также варианты а=125, а=125·2=250, а=125·4=500. В этом случае им соответствует, например b=8. Итак, для каждого параметра а и b возможны 6 значений: 8, 40, 125, 200, 250, 500.
P.S. Если в вопросе подразумевалось количество различных неупорядоченных пар (а,b) то их 9: (125, 8), (125, 40), (125, 200) (250, 8), (250, 40), (250, 200) (500, 8), (500, 40), (500, 200). Соответственно, если надо упорядоченные пары, которые получаются из каждой пары перестановкой, то их 18.
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.