Принцип решения №2: Пусть нужно заказать Х труб по 5м и У труб по 6м, тогда, согласно условию, х+у=30 труб (первое уравнение). Следовательно из труб по 5м мы проложим 5Хм водопровода, а из труб по 6м - 6Ум, что по условию составляет 426м. Составим и решим систему уравнений: (1) х+у=30 (2) 5х+6у=426
Ну а дольше просто решаем систему и получаем ответ. Если не хотите использовать 2 переменных, то сразу выражайте кол-во одних труб, через ко-во других, т.е. если по 5м - Хтруб, то по 6м - (30-х)труб.
Решение Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB = R (радиусу вписанной окружности) и OE = R/2 (по условию). Тогда по теореме Пифагора имеем: BE² = OB² – OE² = R² – (1/4)*R² = (3/4)R² BE = √((3/4)R²) = R√3 / 2 Так как АО = ОВ и катет ОЕ – общий, то ΔАЕО = ΔВЕО. Отсюда следует: ЕА = R√3 / 2 Тогда АВ = ВЕ + ВЕ = R√3 / 2 + R√3 / 2 = R√3 Что и требовалось доказать
Объяснение:
4m−4n =4*0.3-4*(-1.7)=4*(0.3+1.7)=4*2=8